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 FORENSIC
ANALYSIS of the

NetWire Stack
They said you couldn't determine that an attacker using the NetWire RAT  
delivered particular files to a victim's computer. They were wrong.

O
ur casework at Arsenal has 
involved the analysis of computers 
compromised by versions of the 
NetWire remote access trojan 
(RAT) up through 1.7 R11. Although 

the NetWire version we are focusing on in this 
article is 1.7 R11 (released in 2018), and the 
current version is 2.1, many of the concepts we 
describe in this article still apply to the current 
version. Please note that this article is focused 
not only on NetWire 1.7 R11 but also on Windows 
7 32-bit as the compromised operating system.

NetWire was used in one of our highest-
stakes cases to conduct long-term surveillance 
and surreptitiously deliver incriminating 
documents which were later used in criminal 
prosecution. While simple artifacts related to 
NetWire execution can be found in places such 
as the Windows Registry and prefetch files, we 
needed to know much more than when NetWire 
was running on compromised computers. We 
discovered that additional insight could be 
found by analyzing the various portions of 
memory used by NetWire that would sometimes 
end up stored on disk. Most importantly among 
these portions of memory is the stack used by 
the main NetWire thread. You will learn more 
about stacks and threads soon. NetWire stacks 
(particularly the stack used by the main thread 
which we focus on in this article), contain 
information that includes – amongst many 
other things – control codes sent by NetWire 
command and control servers (hereafter 
referred to simply as “c2”). We have found both 

complete and partially intact NetWire stacks 
in Windows swap (pagefile.sys), hibernation 
(hiberfil.sys), crash dumps (memory.dmp), 
and even in unallocated clusters. Due to the 
unique structure of some data contained within 
NetWire stacks, incredibly valuable information 
about a NetWire operator’s activity conducted 
on a victim’s machine can be recovered not 
only from complete stacks within disk images 
but from partially intact stacks as well. As 
an example of this incredibly important 
information, you may be able to identify (as 
we did) where a NetWire operator uploaded a 
particular file to on a victim’s computer, when 
they uploaded the file, and even find content 
from the uploaded file still residing in the stack.

Before we discuss NetWire stacks in more 
detail, let’s get some basics out of the way.

What is NetWire?
NetWire was a popular multi-platform RAT 
system until March 2023 when international 
law-enforcement cooperation resulted in the 
seizure of NetWire infrastructure and the arrest 
of its administrator. Previously, the NetWire 
system could be obtained by attackers a 
variety of ways, one of which was purchase 
from the official World Wired Labs website 1 
that now displays a law enforcement seizure 
notice. NetWire was quite powerful and had 
been under ongoing development for many 
years - for example, news on the World Wired 
Labs website related to version updates went 
back to June 2013. In addition to remote 

GitHub
A GitHub project associated with this article 
contains additional resources related to 
NetWire stack analysis, including the open 
source tool NwStacks. NwStacks supports 
the analysis of Windows 7 (32/64-bit), 
Windows 8.1 (64-bit), and Windows 10 (64-
bit) operating systems which have been 
compromised by NetWire. You can find 
this GitHub project at https://github.com/
ArsenalRecon/NetWireStackForensics.

 1. https://www.worldwiredlabs.com

control features which included uploading 
and downloading files, NetWire offered more 
insidious features such as proxy chaining 
(making the identification of attackers more 
difficult), “stealth” screenshots, key logging 
and password “recovery.”
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The NetWire host (a/k/a agent) running on a 
victim’s computer receives control codes (a/k/a 
commands) from a NetWire c2. The NetWire host 
executable can be compiled as a 32-bit module 
for Windows, GNU/Linux, Android, and Mac OS X. 
While the c2 supports the detection of a Solaris 
host, it does not appear that a Solaris host 
was available in version 1.7. Traffic between the 
NetWire host and its c2 is encrypted, except for 
control codes and payload sizes. A complete 
set of control codes that we have identified 
so far can be found at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/NetWire1.7-controls.txt.

Control code data sent from a NetWire  
c2 has the following format as seen in raw 
network packets:

Bytes 0 – 3: Size of payload in little-endian  
(4 bytes)
Byte 4: Control code (1 byte)
Bytes x – y: Encrypted payload of variable 
length, depending on the control code and  
its arguments

What is a process stack?
A process is essentially a program in its 
running state. When a program is launched 
and a process is started, memory is reserved 
for the storage of crucial data that makes it 
possible for the process to keep track of its own 
execution, arguments to function calls, local 
variables, and return addresses. This memory 
is a process stack (hereafter, stack). The initial 

stack structure is 
determined by the 
compiler when the 
program is compiled. 
With every function 
call a stack frame is 
created and stored 
on the stack. A stack 
frame contains 
arguments, a return 
address, and space 
for local variables. 
The size of a stack 
frame depends 
on the amount of 
memory needed for 
the execution of a 
function. When a 
function returns,  

the stack pointer is reset to its value prior 
to the function call. Figure 1 (from Wikipedia, 
see https://en.wikipedia.org/wiki/Call_stack) 
illustrates a sample stack.

In other words, the stack depth depends on 
the number of nested function calls and the 
sizes of their associated frames. During the 
lifetime of a process, its stack may contain 
one or more stack frames from previously run 
functions left behind after the stack depth has 
changed. Stack frames from previously run 
functions may end up completely overwritten, 
partially overwritten, or not overwritten at all 
depending on the program’s design and the 
specific code paths executed. 

Figure 1. Sample stack illustration

The size of a stack 
frame depends 
on the amount of 
memory needed for 
the execution of a 
function. When a 
function returns, the 
stack pointer is reset 
to its value prior to 
the function call.
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Memory address referencing
When NetWire is loaded, its private virtual 
address is determined by a setting in the PE 
header called ImageBase. Internal address 
referencing for the program/code itself is 
done by using Relative Virtual Address (RVA). 
References to code as found in the stack will 
be a Virtual Address, hereafter referenced as 
“VA”, which is calculated by ImageBase and 
RVA. There are settings in the PE header that 
may override ImageBase. In NetWire 1.7 the PE 
header's Optional Header, DllCharacteristics, 
is set to 0x100 (NX_COMPAT). Because 0x40 
(DYNAMIC_BASE) is not set, the load address 
will always be that of the ImageBase setting 
(0x400000), and code VA’s found on the 
stack will thus match the address seen in 
disassemblers such as IDA.

NetWire functionality involves the use of 
various threads which in turn rely on multiple 
stacks and usage of external heap memory. The 
“main” thread (and its stack) consists of high-
level synchronization, socket handling, and 
input (from the c2) handling. Additional threads 
and their stacks are created based on the 
usage of particular NetWire functionality. The 
primary focus of the analysis described in this 
article is on the main thread and its stack.

NetWire Components
The core elements of a NetWire process include:

•		Handling of sockets (the main thread  
and its stack)

•		Processing of input controls from a c2  
(the main thread and its stack)

•		Sending data back to c2. In most cases this 
data is stored in an external heap where 
encryption is applied

•		Keylogging (an additional thread that uses 
another stack)

An Overview of the NetWire Stack
As explained previously, stack frames are  
used in function calls and the presence of 
previous frames may depend on the code  
paths executed. As we will now see, the  
part of the program that handles higher-level 
synchronization and sockets does not reserve 
much space on the stack. In contrast, the 
part of the program responsible for managing 
commands from the c2 reserves far more 
space on the stack. The distinct code parts 
consistently overwrite the same areas, leaving 
the artifacts of the specific components in the 
exact same fixed locations. 

Stack size and layout (Visually)
Let's take a look at how some of the data 
originating from NetWire’s startup code is 
arranged on the stack. The table below shows 
how the stack size grows when certain events 
(code paths) occur. 

Figure 2. Optional Header of executable

Figure 3. A stack is read from the bottom up. In the case of NetWire, the initial stack size is predictable

Stack frames from previously run functions 
may end up completely overwritten, partially 
overwritten, or not overwritten at all 
depending on the program’s design  
and the specific code paths executed.

The stack is usually found in a state with a size 
of 0x33000 bytes (process is running but not 
connected to c2) or 0x34000 bytes (connected 
to c2). Thus, we will use the 0x34000 size as 
a baseline in our analysis. We have prepared a 
set of suitable bitmaps from stack snapshots 
to represent the stack visually. Snapshots from 

the states when the size is below 0x34000 are 
normalized to 0x34000 with 00s prepended. 
The bytes are then inverted (xor'ed with 0xFF) 
to make 00's appear as white. Then a bitmap 
of 16bpp was created with a layout of 256x416, 
which then perfectly adds up with the stack 
bytes as; 256 x 416 x 2 = 212992 – > 0x34000.
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Figure 4. Stack snapshots of host with states 1 to 6 from left to right

Figure 5. Stack snapshot differences highlighted in red

Figure 6. Stack bitmap with address and offset mapping

The six snapshots in Figure 4 above are from 
the following stack states:

1.		Entry point – size 0x3000
2.	First call – size 0x32000
3.	Second call – size 0x33000
4.	First five calls – size 0x33000
5.	Running, not connected to c2 – size 0x33000
6.		Connected to c2 – size 0x34000

In Figure 5, we have a set of bitmaps  
with differences, as produced by the compare 
functionality in Image Magick, taken from the 
same snapshots and order. A shadow is applied 
to the existing data, and the differences are 
highlighted in red.

The bitmaps shown in Figure 6 establish 
a visual understanding of the stack layout, 
especially which areas are modified after 
various events occur. The normalized stack  
will thus have the following memory addresses 
(left side) and translated file offsets (right side):

At this stage, we can spot some distinct 
sections from the above bitmap:

•		Top. Data section that may change when 
handling sockets and processing input.

•		Mid. Large area reserved for the raw input 
received from c2.

•		End. This small data section is static  
over the process's lifetime (caused by  
the startup code). 

We now have a rough idea of what kind of 
data can be found in the various sections.

High-level code flow explanation
Let's take a look at the code. We will  
begin with the function prologue (start) of  
the most critical calls in the chain, starting  
with the entry point. For simplicity, we will  
split the explanation into 3 major levels  
(A through C):

Level A
.text:00402BCB 	 mov 	 eax, 3002Ch
.text:00402BD0 	 call 	 sub_41CE38
.text:00402BD5 	 sub 	 esp, eax

Level A handles higher level synchronization, 
socket handling, and basic control validation. 
Incoming data from the c2 in the form of a 
payload arrives to the host in smaller network 
packets and is stored on the stack in chunks 
of maximum 0x2ffff bytes. The next chunk is 
stored on the stack when the current chunk 
has been fully processed. This section of the 
code runs in a loop checking socket status.  
It is important to note that the size 0x2ffff  
fits within the reserved function workspace  
of 0x3002C. This area is represented by the  
large white midsection in the bitmap Figures 4, 
5, and 6 above.

Process initialization (before execution 
arrives at the entry point) is found at the end, 
untouched, for the lifetime of the process. 
Thus, from the top of a typical stack (at the 
bottom of Figure 6 with the higher addresses  
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towards 0x230000) we will find some unique 
data representing the absolute end. Or, more 
precisely, the starting point.

Figures 7 and 8 show what the end of the 
stack looks like initially and that the values at 
addresses 22ff88 and 22ff80 are written to 
the stack after the execution of the first few 
instructions going into the first function call. The 
data seen from 22ff8c and to the end at 22ffff 
is the initial data setup by the kernel. The only 
usage of this section of the stack is for validation. 
For example, we can spot several references to 
the entry point (see Figures 3 and 4). The entry 
point address in this section represents a regular 
process start of the standard host executable. In 
the case of other non-regular methods of starting 
the process, such as through process hollowing, 
the entry point address in this section may have 
a different value.

Level B
.text:00401092 	 push 	 esi
.text:00401093 	 push 	 ebx
.text:00401094 	 mov 	 eax, 1434h
.text:00401099 	 call 	 sub_41CE38
.text:0040109E 	 sub 	 esp, eax

This is the main function for the handling 
of all input data (controls and associated 
payloads) as sent from the c2 and is where 
the most important data for forensic analysis 
begins. This function is called whenever new 
incoming data is detected in the sockets in level 
A. It is responsible for decrypting the payload 
and passing execution down to the next level 
depending on the control code.

Level C
Lower-level functions performing various tasks 
for processing control codes, called from level B. 
Let's go back to level B and take a closer look.

In Figure 9, on the next page, where the 
execution is halted at the main function’s start, 
we will take a closer look at what the different 
interesting data observations mean. On the left 
side, where the c2 is visible, we can see TShark 
filtering and printing the NetWire TCP data sent 
from the c2. On the right side, we can see the 
debugger attached to the host process and with 
the stack visible in the lower “Dump 1” window. 
The important observations are:

Figure 7. Debugger stopped at entry point

Figure 8. Debugger stopped in the start of the first call 

•		The socket descriptor (0x0184) used for this 
specific session. Address 0x1FFF60.

•		The current control (0xA6) being processed. 
Address 0x1FFF64.

•		The pointer to the payload (0x1FFF7D).  
Address 0x1FFF68.

•		The length of the payload (0x06).  
Address 0x1FFF6C.

•		The control (0xA6) in raw as copied verbatim 
from the socket. Address 0x1FFF7C.

•	 The encrypted payload (61 94 9E 29 BC 10) 
in raw as copied verbatim from the socket. 
Always null-terminated. Address 0x1FFF7D.

This is the main function for the handling of all input data  
(controls and associated payloads) as sent from the c2 and  
is where the most important data for forensic analysis begins.
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Now we can verify that the encrypted data 
sent from the c2 is stored on the host's stack 
(red). In the TShark window we can see the 
previous control being an A4 (listing of drives), 
which does not have associated data. Moreover, 
we can also verify that the first auth packet sent 
(control 9B), which does not require decryption 
(the 0x10 byte session key is updated 0x1FFF9D 
– 0x1FFFAC), has portions of its payload data still 
visible in the slack area represented by the green. 

In Figure 10, we see the debugger has stepped 
through the first few instructions of the main 
function and stopped at the exact location 
where the payload has been decrypted. The 
encrypted 6 bytes (61 94 9E 29 BC 10) are now 
decrypted (43 3A 5C 2A 2E 2A) in place at the 
same location and always with a null byte at the 
end. The current A6 control (File Explorer browse) 

was sent with the argument "C:\*.*". Also, note 
the value for the stack pointer (0x1FEB20 which 
translates to offset 0x2BA20), which will be 
essential as an anchor in our parsing. All input 
coming from the c2 is stored and decrypted in 
the exact same way at the exact same location. 
This location is only overwritten when new input 
has arrived from the c2. Not all controls have 
associated payload and thus very often we will 
be able to find remnants of previous commands. 
This knowledge is advantageous in forensic 
analysis of the NetWire stack! The remainder 
of this function contains a huge jump table, 
essentially a switch statement for each of the 
control codes. Each jump destination will make 
one or more additional function calls (level C) 
which we will see leaves various artifacts on  
the stack. 

Figure 9. Debugger stopped at the function start before decryption

Figure 10. Debugger stopped right after decryption
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Where do we start?
Before delving into NetWire stack analysis, 
we need to establish an anchor that helps 
us identify a NetWire stack amongst other 
data. As digital forensics practitioners who 
often deal with disk images as opposed to live 
computers, we need to dig into places on the 
disk where memory may have ended up – for 
example, Windows swap (pagefile.sys). With 
a bit of trial and error we have found that 
the lower area of level B as mentioned above 
(towards address 0x1FEB20) is the ideal anchor. 
At a session start when connecting to the c2 
a number of artifacts are stored in the stack 
in addresses that, to a varying degree, are 
re-used as buffers. Some of these buffers are 
never or rarely overwritten. We have defined 
four such addresses and are providing a 
complete table showing how and when each 
of them change. This table is available on 
GitHub at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx (sheet Buffers_matrix). 

The addresses/offsets of the buffers we  
are interested in:

•	 buffer 0 	 0x1FEB60 / 0x2B60
•	 buffer 1 	 0x1FEBA0 / 0x2BA0
•	 buffer 2 	 0x1FECA4 / 0x2CA4
•	 buffer 3 	 0x1FEF00 / 0x2F00

During a session start (the initial auth to c2 
when the 9B control is sent) the buffers are 
populated with the following data before being 
sent to the c2:

•	 buffer 0:	 hostname
•	 buffer 1: 	 username
•	 buffer 2: 	 a custom formatted string, 

representing a bitmask for the victim’s OS. 
See sheet “Host_OS” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

•	 	buffer 3: 	 a custom formatted string, 
representing various host details. See 
sheet “Host_details” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.
 
In Figure 11, we see how the anchor area and 

buffer 0 – 2 looks initially after the 9B control 
when a session is established.

Since buffer 3 will be part of what we 
decode, it is important to know exactly what it 
contains. The complete breakdown of the initial 
data in buffer 3 is shown in Figure 13. 

You can cross check this breakdown 
with the table in sheet “Buffers_matrix” 
in the spreadsheet at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

Referencing back to Figure 9, we can see the 
code at 004010A0 and 004010A7 where the 
control code is copied to 0x1FEB5C / 0x2B5C.

Since the hostname stays untouched for the 
lifetime of a session, we have a perfect spot to 
build a signature from, at the heart of the most 
compelling data. We can now build this byte 
level regex:

[\x97-\xE8] + .{3} + <hostname> + \x00\x00\x00

Which means:

•		1 byte for a valid control code
•		3 bytes of anything
•		Variable byte length for the actual hostname 

formatted in hex
•		3 bytes of 00's

This is a rather simple regex, so any  
code involved in processing the hits will need 
additional validation. For this validation we 

Figure 11. The anchor 

Figure 12. Buffer 3 right after a session is established

Figure 13. Buffer 3 containing host details

have provided a proof of concept (POC) tool 
named NwStacks on GitHub at https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/NwStacks. The memory address 
pointers of a NetWire process may change 
depending on how it was executed. However, 
the actual address, as seen in memory on 
the main thread's stack, is not crucial to our 
analysis as long as we can identify the data 
on disk and work our way from a translated file 
offset. The data points we will use always have 
a fixed relative distance between them, thus 
making identification and validation possible. 
We will call these “crucial data points” in the 
rest of this article. The fixed distance is caused 
by the stack frame for the given function call 
(except for calls going to external DLLs, which 
may differ between Windows versions) always 
having the same size regardless of the control 
codes and payloads being processed.

For most situations when a connection to a 
c2 has been established, the stack size will be 
a minimum of 0x34000 bytes. The stack size 
will expand to 0x35000 bytes in a few well-
defined situations. Our research has shown that 
when the size has grown to 0x35000 bytes, the 
data in the first 0x1000 bytes contains nothing 
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useful. For the analysis described in this article, 
we have settled on using the size 0x34000 as 
a baseline. That means for any search hit on 
the byte regex described above, we will need 
to assume that the stack begins 0x2b5c bytes 
before the signature hit and then treat the 
following 0x34000 bytes as the full stack. 

Validation
Our next step will be to validate certain crucial 
data points within the stack to determine their 
validity. In the remainder of this article, we will not 
refer to memory addresses unless specifically 
needed and instead refer to the file offsets in hex 
notation with dec in brackets. A small subset of 
the validation checks could look like this:

•	The VA at 0x2B1C (11036) is valid
•	The socket descriptors at 0x3F60 (16224) and 

0x3F78 (16248) match (they might differ in the 
case of a reconnect)

•		Pointers at 0x2B38 (11064), 0x2B3C (11068) 
and 0x2B40 (11072) are actually pointing to 
buffer 0, 1 and 2

•		Valid controls at 0x2B5C (11100) and 0x3F7C 
(16252) + they match

•		The length of payload at 0x3F6C (16236) is 
valid, considering the current control

•		The string formatting definition prior to buffer 
3 is valid, at 0x2EE8 (12008) (missing if the 
connection is reset and socket descriptor is 
FFFFFFFF)

•		The VA at 0x3F50 (16208) is valid
•		The VA at 0x3F5C (16220) is valid
•		The value of 0003002C is present at 

0x22FF80 (2293632)
•		The VA 00402BD5 is present at 0x22FF88 

(2293640)

What data in the stack is not helpful for our 
analysis?

•		Addresses to heap memory
•		Addresses to functions in DLLs loaded 

(kernel32.dll, msvcrt.dll etc)
•		Socket descriptors (can be used as validation 

within a given stack, but may change for a 
different process or session)

Significant artifacts we can use in our analysis!
By now, we have a good understanding of the 
layout of the stack and how to find and validate 
that data – including data that needs to be 
treated carefully and what data we can ignore. 
The most significant artifacts which will be 
useful in our analysis are:

0)
The last return address pushed to the stack in 
level B (function 00401092) is stored at 0x2B1C 
(11036). See a full listing in our spreadsheet 
at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx. Most often (in the case of a ping) 
this value is 00401147 which originates from this 
code section:

We can use this value for further validation 
and for the understanding of #6 described below.

1)
Buffer 1 – 3
(Based on the table within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx) We can use this information in 
multiple ways. The presence of data (or the lack 
of data, represented by the amount of zeroed 
data), and even in combination. For example, 
some actions always leave specific data behind, 
whereas other actions never interact with these 
buffers. Some actions wipe the buffer with a 
specific amount of 00 before use, whereas 
others never wipe and simply overwrite and 
leave "slack" data behind. For some actions 
that leave data behind, the data format is 
unique enough to tell which control command it 
originated from.

As digital forensics 
practitioners who 
often deal with  
disk images as 
opposed to live 
computers, we  
need to dig into 
places on the disk 
where memory may 
have ended up.

.text:0040111F 		  movzx 	 edx, [esp+8+arg_30] ; jumptable 0040111D case 151

.text:00401124 		  mov 	 eax, [esp+8+s]

.text:0040112B 		  mov 	 [esp+8+lpValueName], 0 ; int

.text:00401133 		  mov 	 dword ptr [esp+8], 0 ; char *

.text:0040113B 		  mov 	 [esp+8+var_4], edx ; int

.text:0040113F 		  mov 	 [esp+8+Size], eax ; s

.text:00401142 		  call 	 sub_408B8F ; Send the default reply packet (command 97).

.text:00401147 		  jmp 	 loc_402B45 ; Nothing more to do, jump to end.

2)
Timestamp
At 0x3C4C (15436), there is a 64-bit timestamp 
(in local time) written on every socket event. 
We can use this timestamp to determine from 
which point in time the stack is from. When 
a session is active, a function at 00408F43 
contains a loop where the socket is checked 
with a 15-second timeout. The loop goes from 3 
to 0; upon reaching 0, a 98 control is sent to the 
c2. On the c2 there are settings for answering a 
host ping and also to actively send ping requests 
to hosts. If both settings are deactivated on the 
c2, the timestamp is updated every 15 seconds. 
However, the timestamp will be updated even 
more frequently if other controls are actively 
sent from the c2. If both settings are deactivated 
on the c2, and a 98 control is triggered from the 
host, data in area 0x3AB4 – 0x3BEF (15028 – 
15343) will be updated with irrelevant content.

3)
c2 hostname
At 0x3068 (12392), there may be a remnant 
from the initial connection to the c2, which 
is the c2 domain name. If this area is zeroed 
(the area covered by buffer 3), one of the 
actions listed within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx must have been executed.

4)
Control
Part of the validation is to check 0x2B5C (11100) 
and 0x3F7C (16252). Because of the frequent ping 
requests, the current control is very often 97. 
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5)
Payload
The payload bytes start at 0x3F7D (16253). This 
area is never wiped. Any data here passed as 
an argument to control will overwrite existing 
data with the size of the current payload and 
with a null termination. For some of the controls 
that do not have an argument (such as 97, the 
ping), the size is 0, and the first byte here is 
00. In many cases, we will find the remnants of 
previous payloads here. The complete payload 
area stretches from 0x3F7D (16253) to 0x22FF7B 
(2293627), giving it a maximum size per block of 
0x2FFFF (196607). The block size is relevant when 
a payload from the c2 has a size beyond 0x2FFFF 
(196607), in which case it is split up into 0x2FFFF 
(196607) blocks. This happens only with file 
uploads when the file size is larger than 0x2FFFF 
(196607). In the case of a file upload, the current 
block size may be found as a remnant in the lower 
24 bits of the uint32 at 0x1FEAF8 / 0x2AF8, which 
we will take a closer look at later in this article. 
In the cases where no upload of significant size 
has arrived, there will often be remnants from 
the initial 9B control during the establishment 
of the connection to the c2. The payload in this 
situation is always of size 0x3E (62) and looks 
like random data caused by encryption (last 
byte at 0x3FBA (16314)). Note that the area from 
0x22E150 (2285904) may contain remnants 
from the initial startup of the process (the "end" 
section described for the bitmaps at the top). For 
a full listing of all c2 actions and sample payloads 
decrypted, see https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Decrypted-
payloads.txt.

Level C artifacts are caused by the lower-level 
functions when processing controls. This is the 
topmost area in the "Top" section described in 
the bitmaps. Data resolved in this location is, to 
a large degree, caused by calls to the winapi, 
and thus some addresses where data ultimately 
gets stored may be OS-dependent. Depending 
on how and where the stack was found, some 
of this area may be missing or overwritten. This 
is especially likely the deeper in the stack the 
data was stored. Treat the following items with 
care. In our tool NwStacks, this is dynamically 
resolved. The most significant File Explorer /  
Key Logs usage remnants are as follows.

Note
Ping requests overwrite portions of a 0x340 
(832) byte area at 0x27F0 – 0x2B30 (10224 – 
11056). Take this into consideration.

6)
File Explorer init (drive listing) at 0x1B0C (6924). 
This is caused by a call to kernel32!GetLogic
alDriveStringA. The location is constant for all 
operating systems. It is one of the few situations 
where the full output data sent to the c2 is stored 
directly on the stack used by the main thread 
(due to its small size). Each entry representing 
a volume is 4 bytes long. The full data set size 
is 0x1AFC (6908). At 0x1AEC, there is a return 
address (VA) written of 004095E4. See our 
NwStacks tool for validation and detection.

7)
The 004095ED function, which is used for both 
regular file explorer browse (A6 control) and 
key logger reader/browse (CC control), leaves 
somewhat unique artifacts often visible in this 
larger area. The processing of these controls will 
return details from the file system (type, size, 
name, timestamp), and it uses a series of winapi 
calls to get the raw data before formatting it and 
sending it back to the c2. We will take a closer 
look at how it works, starting with the function 
epilogue (start):

.text:004095ED

.text:004095ED 	 push 	 edi

.text:004095EE 	 push 	 esi

.text:004095EF 	 push 	 ebx

.text:004095F0 	 sub 	 esp, 410h

Here we immediately see the workspace of 
this function being reserved as 410h. Effectively 
the esp has been reduced from 0x1FEB20 to 
0x1FE700 after going through the epilogue.

It turns out this function call chain will go 
quite deep and use the area stretching back to 
0x1FDEE4. That leaves 0x1FEB20 – 0x1FDEE4 
= 0xC3C bytes of stack data relating to this 
function's processing of file system data. As 
we will see, this information will help us further 
understand why certain data is found in this 
region of the stack. The actions performed in 
this function are:

A. Retrieve directory information based on 
buffer 2 – > kernel32!FindFirstFileA – > 
(ntdll!NtOpenFile + ntdll!NtQueryDirectoryFile.

B. Iterate through all items, and retrieve file 
system details – > kernel32!FindNextFileA

C. Extract the details such as attribute type, 
name, size, and the last write timestamp

D. Convert timestamp to UTC – > 
kernel32!FileTimeToSystemTime

E. Format the data in a special way as is 
expected on the c2 end – > msvcrt!_vsnprintf

F. Differentiate on files vs folders in how the 
formatting is done (folders don't have size.

G. Each item is formatted and prepared for output 
and is then copied to a separate heap memory 
location

H. When all items are done, send the result back 
to the c2

Now let's go through the most useful data 
that we can find here, starting with the topmost 
data (the deepest point on the stack that this 
function went to):

7a)
0x1F1C (7964)
As part of A) there will ultimately be a call 
to ntdll!_RtlGetFullPathName_Ustr which is 
needed for preparing the string before calling 
ntdll!NtOpenFile.

Deeper in the call chain within 
kernel32!FindFirstFileA there will ultimately be 
a call to ntdll!_RtlGetFullPathName_Ustr which 
is needed for preparing the string before calling.

7b)
0x21F4 (8692)
As part of A) the call to ntdll!NtQueryDirectoryFile 
will leave a FILE_BOTH_DIR_INFORMATION struct 
of the target directory.

kernel32!FindFirstFileA – > 
ntdll!NtQueryDirectoryFile

It is important to note that in the case  
of a refresh/browse in File Explorer after an 
upload, the 3 timestamps except CreateTime 
are updated. 

Some actions always 
leave specific data 
behind, whereas 
other actions never 
interact with these 
buffers. Some actions 
wipe the buffer with a 
specific amount of 00 
before use, whereas 
others never wipe  
and simply overwrite 
and leave “slack” 
data behind.
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7c)
0x24A4 (9380)
During B-C a temporary copy of the WIN32_
FIND_DATAA structure for the next item is stored 
here. This copy may be partially overwritten with 
data from the ftLastWriteTime member.

(This only applies to a Windows 7 victim)

7d)
0x26FC (9980)
Last ret address pushed on the stack. When the 
function is done it will be 409A89 or 409A2F.
0x2704 (9988) / Control A6 or CC.

7e)
0x2730 (10032)
The format statements used when feeding the 
various data pieces through msvcrt!_vsnprintf.

7f)
0x2780 (10112)
During B) another copy of the WIN32_FIND_DATAA 
structure for the next item is also stored here.

7g)
0x28E4 (10468)
During E) and F) the ftLastWriteTime timestamp 
is taken from 0x1FE794 and outputs the string at 
0x1FE8E4.

7h)
0x2904 (10500)
During G) – H) format full row for item.

8)
File Upload and Download.

Upload
At 0x2AEC (10988) the return address 41BCEB 
is pushed to the stack only in the case of a file 
upload. This is caused by the incoming AD control 
closing the file handle. The address originates 
from the function 0041BCA8, which is responsible 
for closing certain file handles. The only other 
case resulting in this code path being triggered 
is for downloads, but because the outgoing AD 
control is performed in a separate thread (not 
the main thread as with incoming controls), the 
address is not pushed to the stack used by the 
main thread. In the upload case, the memory 
address 0x1FEAF4 = 1 (0x2AF4 / 10996), and 
the lower 24 bits of uint32 at memory address 
0x1FEAF8 (0x2AF8 / 11000) equals the size of the 
current/last chunk. The chunk size is written to 
the stack at 0041BCA8 during the processing of 
an incoming AC control at this code location:

Download
At 0x1FEA8 the return address 41C150 is pushed to 
the stack. This is caused by the AB control, which 
is effectively caused by the function located at 
00401B66. Let's take a closer look at it:

It turns out that the 41C150 address in the 
stack is written for uploads and downloads in 
the same location. Still, because a new thread 
is started for sending data back to the c2 with 
the download, the address stays here in the 
download scenario. For the upload scenario, the 
closing of a handle with an incoming AD control 
overwrites and leaves its unique fingerprint. 
For the download scenario, memory address 
0x1FEAF0 = 0 (0x2AF0 / 10992), and the 8 bytes 
at memory address 0x1FEAF8 (0x2AF8 / 11000) 
represents the 64-bit LastAccessTime timestamp 
of the downloaded file. The timestamp is caused 
by a call to GetFileattributesExA which generates 
a WIN32_FILE_ATTRIBUTE_DATA struct at memory 
address 0x1FEAEC (0x2AEC / 10988). This struct is 
almost completely overwritten soon after, with the 
exception of LastAccessTime member. In Figures 
14, 15 and 16, let's just take a closer look at how 
it happens with snapshots when execution has 
been halted in debugger at 3 different locations 
from the above code section.

Fortunately, the artifact in the 0x20 byte 
area 0x1FEAE0 (0x2AE0 / 10976) – 0x1FEAFF 
(0x2AFF / 11007) which is unique to uploads 
and downloads is left untouched when a ping 
overwrites the surrounding area. Even a file 
explorer refresh/browse will not overwrite 
the bytes used in this area specific to the 
identification of upload/download. However, 
other controls/actions may overwrite and 
cause identification of upload/download 
specific to this location to be impossible. See 
our NwStacks tool for detection and validation.

Note
If the socket descriptor equals 0xFFFFFFFF, it 
means the host is not connected to the c2. If 
the host still needs to connect to the c2, the 
buffer 0 – 4 will contain no useful information, 
and the control + payload area at 0x3F7C+ will 
be blank. If a previously established connection 
gets dropped, the area at 0x3F7C+ will contain 
the data last stored there.

Figure 16. Stack snapshot when execution is halted at VA 00401B95

Figure 15. Stack snapshot when execution is halted at VA 00401B40

Figure 14. Stack snapshot when execution is halted at VA 00401B3B

.text:0041C8FB 		  mov 	 [esp+2Ch+Count], 	 eax ; 	 Count

.text:00401B3B 		  call 	 sub_40AC70

.text:00401B40 		  mov 	 ecx, [esp+8+arg_1410]

.text:00401B47 		  mov 	 [ecx+218h], eax

.text:00401B4D 		  mov 	 [ecx+21Ch], edx

.text:00401B53 		  nop

.text:00401B54

.text:00401B54 	 loc_401B54: 		  ; CODE XREF: sub_401092+934‚Üëj

.text:00401B54			    ; sub_401092+A14‚Üëj

.text:00401B54 		  mov 	 eax, [esp+8+arg_1410]

.text:00401B5B		  mov 	 [esp+8+var_4], eax

.text:00401B5F 		  mov 	 [esp+8+Size], offset sub_41C150

.text:00401B66 		  call 	 sub_40B2AB

.text:00401B95 		  jmp	 loc_402B45
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Wrap-up with a demonstration
We have recreated a realistic user scenario 
with multiple file uploads and file deletion.  
A series of stack snapshots have been taken, 
one after each action from the c2, which we 
have made available at GitHub https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleStackSnapshots/win7-32 
(article). All the files we used for uploads are 
available on our GitHub project at https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleFilesUploaded. Here is a 
summary of our operations:

1) File Explorer open c:\share\sample_uploads

2) Upload of the file "My savings plan for 2023 
– v1.4 (12.30.2022).pdf" to c:\share\sample_
uploads. File size is 54821 bytes

3) Execute a refresh in File Explorer to verify that 
the file is uploaded

4) Upload a second file "file_w_33_0x40.txt" to 
c:\share\sample_uploads
File size is 64 bytes.

5) Execute a refresh in File Explorer to verify that 
the file is uploaded

6) Ping sent from the c2

The c2 was configured not to answer  
or send pings to create some snapshots 
without ping overwriting anything. Instead,  
ping requests were actively sent from the  
c2 using the NetWire UI, so that snapshots 
could be taken to show what a ping overwrite 
looks like.

Now, we will not analyze each of the six 
stack snapshots here, as they are made 
available for anyone wanting to verify the 
results. But we will take snapshot three and 
verify our defined points of interest.

Snapshot 3

Step 1: Validation

•		Signature was found at 0x2B5C, where we 
see an A6 control, then three nulls and the 
hostname.

•		The VA at 0x2B1C is valid: 004018ED.
•		The socket descriptors at 0x3F60 and 0x3F78 

match: 0x0180.
•		The pointers at 0x2B38 (0x1EFEBA0), 0x2B3C 

(0x1FEB60) and 0x2B40 (0x1FECA4) are as 
expected. Substitute 0x1FC000 from each and 
you'll see that they match what we defined as 
buffer 0, 1 and 2.

Figure 17. Validation 1

Figure 18. Validation 2

Figure 19. Validation 3

Figure 20. Payload section

•		The control at 0x2B5C and 0x3F7C match: 
0xA6.

•		The size of the payload at 0x3F6C looks valid: 
0x1B.

•		The formatting at 0x2EE8 is present: 
%c%.8x%s etc.

•		The VA at 0x3F50 is valid: 0040109E.
•		The VA at 0x3F5C is valid: 00402C27.
•		At 0x33F80 we find the expected value: 

0003002C.
•		The VA at 0x33F88 is valid: 00402BD5

Step 2: Artifacts
a) Check payload. 
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Buffer 3

Figure 22. Buffer 3

We can clearly see the data from the initial 
connection has been wiped, leaving only a 0x30 
byte. This artifact thus matches our suspected 
file upload from the previous step, according 
to the “Buffers_matrix” table at https://github.
com/ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

c) Check the socket timestamp.

Figure 23. Socket timestamp

At offset 0x3C4C, we find the 8 bytes 
4002300DE61DD901 decoded as a 64-bit 
timestamp from little endian format, equals: 
2023-01-01 13:36:28.5073984.

d) Verifying the upload artifact. We already have 
a strong indication that a file upload has occurred. 

At offset 0x2AF8 (ref 8), we find the value 
0xD625, which according to surrounding data  
at 0x2AEC and 0x2AF4, indicates the size of  
the last block for a file upload.

Figure 24. Size of uploaded file

 
As the file bytes start at the second byte in 

the payload from an AC control, we will need to 
copy 0xD625 bytes from offset 0x3F7E.

Figure 25. Payload end

 
We can see that the bytes ending at 0x115A2 

indicate the end.

In the section for raw input from the c2, starting 
at 0x3F7C we can see:

•		The control is A6, which is a File Explorer 
browse command.

•		Taking the defined size of 0x1B bytes from 
offset 0x3F7D gives us: C:\share\sample_
uploads\*.*.

•		There is an expected null byte at 0x3F98 
(0x3F7D + 0x1B).

•		We can spot more data after the current 
payload, starting at 0x3F99; this strongly 
indicates some other action before the current 
0xA6.

b) Check buffers 1, 2, and 3 according to our 
table in https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx.

Buffer 1
In Figure 17, we see in buffer one at 0x2BA0 
that there is a username visible. Also, other 
data remnants are visible after the username, 
indicating that a control that wipes the buffer 
has not been executed in this session.

Buffer 2
At offset 0x2CA4 we can see data in buffer 2. 
(Figure 21) Here we see a null-terminated string 
that perfectly matches the browse command  
seen in the previous step:

C:\share\sample_uploads\*.*

But we can also see remnants of more data 
in the buffer:

avings plan for 2023 – v1.4 (12.30.2022).pdf

It seems clear that the argument here 
has been a file name, and according to the 
“Buffers_matrix” table at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx, there are only two 
possible options. A file rename or a file upload. 
Moreover, since 0x200 bytes was wiped earlier, 
this strongly suggests a file upload occurred.

We can clearly see 
the data from the 
initial connection has 
been wiped, leaving 
only a 0x30 byte.

Figure 21. Buffer 2

 MAIN FEATURE ADVANCED

Digital Forensics Magazine44

DFM52_032-046_Arsenal.indd   44DFM52_032-046_Arsenal.indd   44 02/05/2023   15:3902/05/2023   15:39



Here is a side-by-side comparison of the copied 
and original file bytes showing how the argument 
overwrote the first few bytes to the A6 control.

Figure 26. File upload comparison

 
e) Check lower-level artifacts from File Explorer 
and browse command.

(ref 6)
At 0x1AEC, we find the VA 004095E4, which is 
the last return address pushed on stack within 
the 00409508 function which is only called 
when processing the A4 control. At 0x1AFC 
we find the total size of the data which is 0xC. 
The array of detected volumes are found from 
0x1B0C – 0x1B17.

Figure 27. File Explorer detecting available drives

 
The decoded volume array;
A: – > Floppy Drive
C: – > Fixed Drive
D: – > CD-ROM Drive

(ref 7a)
At offset 0x1F1C we see the expected wchar 
equivalent of the browse argument (as prepared 
to NtOpenFile).

Figure 28. Low level analysis of offset 0x1F1C

 
(ref 7b)
At offset 0x21FC we also find the FILE_BOTH_
DIR_INFORMATION struct which includes the 4 
$STANDARD_INFORMATION timestamps from the 
directory being browsed.

Figure 29. Low level analysis of offset 0x21FC

Full translation;
CreationTime: 2022-12-31 13:35:53.6698984
LastAccessTime: 2023-01-01 13:36:08.9107187
LastWriteTime: 2023-01-01 13:36:08.9107187
ChangeTime: 2023-01-01 13:36:08.9107187
EndOfFile: 0
AllocationSize: 0
FileAttributes: 16 (directory)
FileNameLength: 2
EaSize: 0 
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(ref 7d)
At 0x26fc we find the VA 409A89 and at 0x2704 
we see the value A6, suggesting the low-level 
browse related artifacts belong to the A6 control.

Figure 30. Low level analysis of offset 0x26FC

(ref 7f)
At 0x2780, we find a WIN32_FIND_DATAA struct 
for the last item in alphabetic order found in the 
directory browsed.

Figure 31. Low level analysis of offset 0x2780

 
Full translation;
FileAttributes: 32 (archive)
CreationTime: 2022-11-09 16:21:02.8045468
LastAccessTime: 2022-11-09 16:21:02.8045468
LastWriteTime: 2022-11-09 16:21:02.8357968
FileSizeHigh: 0
FileSizeLow: 24288
FileName: zzz.txt

(notice the slack data from the file name of a 
previous file passed into the struct)

(ref 7g)
At 0x28e4 we find the formatted string of 
LastWriteTime from the above struct: 

09/11/2022 16:21:02.

Figure 32. Low level analysis of offset 0x28E4

 
(ref 7h)
At 0x2904, we find the details of the current/last 
item formatted as returned to the c2;

32 zzz.txt 24288 09/11/2022 16:21:02

Figure 33. Low level analysis of offset 0x2904

 This field is of variable size, and just as we 
saw in the WIN32_FIND_DATAA struct above, 
slack data may be visible. Notice the 07 field 
separator that is heavily used in NetWire.

Summary snapshot 3
This stack snapshot is from around 2023-01-01 
13:36:28.5073984.

When File Explorer was initialized, three 
volumes were detected: A:, C:, and D:.

The current A6 control is a File Explorer 
browse with the argument C:\share\sample_
uploads\*.* verified at three different levels.

A file ending with "avings plan for 2023 – v1.4 
(12.30.2022).pdf" appears to have been uploaded 
to C:\share\sample_uploads\ with almost the 
entire content recoverable within the stack. 

From low-level timestamps, the exact point in 
time appears to be 2023-01-01 13:36:08.9107187.

The last executed A6 control was executed 
sometime between 2023-01-01 13:36:08.9107187 
and 2023-01-01 13:36:28.5073984.

A filesystem analysis has not been included 
here, but it would be yet another set of artifacts 
to compare the stack findings with. •

Snapshots
Our findings have been verified on Windows 
7 32-bit and 64-bit, Windows 8.1 64-bit, 
and Windows 10 64-bit. A collection of 
stack snapshots for each OS is provided 
at https://github.com/ArsenalRecon/
NetWireStackForensics/tree/main/
SampleStackSnapshots. We have done 
some preliminary testing of the latest NetWire 
(version 2.1), and the methodology outlined 
here is still applicable to a large extent. There 
are changes, though – for example, the stack 
has shrunk to roughly 1/4 of the size in 1.7, and 
in the pe header the DYNAMIC_BASE setting 
is present in DllCharacteristics. Control codes 
look to be the same. We may address version 
2.1 more specifically in the future.
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