
 FORENSIC ANALYSIS
of the NETWIRE
 STACK

 Digital
 ForensicS

Issue 52 / £14.99	 TR Media

52

9 772042 061004

 PLUS
 Rethinking Remote DFIR
 Challenges Detecting Email Scams
 Empowering Digital Forensics in Policing
 Regulars: News, Legal, IRQ & More!

 Magazine

The Quarterly Magazine for Digital Forensics Practitioners	 Issue 52 • Q1 2023

They said you couldn't determine that an attacker
using the NetWire RAT delivered particular files to
a victim's computer. They were wrong.

DFM52_OFC_Cover - Online.indd 1DFM52_OFC_Cover - Online.indd 1 27/04/2023 11:2927/04/2023 11:29

ALSO AVAILABLE FROM ARSENAL…
ANCHORS IN RELATIVE TIME

ARTICLES 1 & 2
FEATURED EXCLUSIVELY IN

DIGITAL FORENSICS MAGAZINE ISSUES 18 AND 27

Arsenal - House Ad.indd 2Arsenal - House Ad.indd 2 12/06/2023 17:5112/06/2023 17:51

ALSO AVAILABLE FROM ARSENAL…
ANCHORS IN RELATIVE TIME

ARTICLES 1 & 2
FEATURED EXCLUSIVELY IN

DIGITAL FORENSICS MAGAZINE ISSUES 18 AND 27

Arsenal - House Ad.indd 3Arsenal - House Ad.indd 3 12/06/2023 17:5112/06/2023 17:51

 FORENSIC
ANALYSIS of the

NetWire Stack
They said you couldn't determine that an attacker using the NetWire RAT
delivered particular files to a victim's computer. They were wrong.

O
ur casework at Arsenal has
involved the analysis of computers
compromised by versions of the
NetWire remote access trojan
(RAT) up through 1.7 R11. Although

the NetWire version we are focusing on in this
article is 1.7 R11 (released in 2018), and the
current version is 2.1, many of the concepts we
describe in this article still apply to the current
version. Please note that this article is focused
not only on NetWire 1.7 R11 but also on Windows
7 32-bit as the compromised operating system.

NetWire was used in one of our highest-
stakes cases to conduct long-term surveillance
and surreptitiously deliver incriminating
documents which were later used in criminal
prosecution. While simple artifacts related to
NetWire execution can be found in places such
as the Windows Registry and prefetch files, we
needed to know much more than when NetWire
was running on compromised computers. We
discovered that additional insight could be
found by analyzing the various portions of
memory used by NetWire that would sometimes
end up stored on disk. Most importantly among
these portions of memory is the stack used by
the main NetWire thread. You will learn more
about stacks and threads soon. NetWire stacks
(particularly the stack used by the main thread
which we focus on in this article), contain
information that includes – amongst many
other things – control codes sent by NetWire
command and control servers (hereafter
referred to simply as “c2”). We have found both

complete and partially intact NetWire stacks
in Windows swap (pagefile.sys), hibernation
(hiberfil.sys), crash dumps (memory.dmp),
and even in unallocated clusters. Due to the
unique structure of some data contained within
NetWire stacks, incredibly valuable information
about a NetWire operator’s activity conducted
on a victim’s machine can be recovered not
only from complete stacks within disk images
but from partially intact stacks as well. As
an example of this incredibly important
information, you may be able to identify (as
we did) where a NetWire operator uploaded a
particular file to on a victim’s computer, when
they uploaded the file, and even find content
from the uploaded file still residing in the stack.

Before we discuss NetWire stacks in more
detail, let’s get some basics out of the way.

What is NetWire?
NetWire was a popular multi-platform RAT
system until March 2023 when international
law-enforcement cooperation resulted in the
seizure of NetWire infrastructure and the arrest
of its administrator. Previously, the NetWire
system could be obtained by attackers a
variety of ways, one of which was purchase
from the official World Wired Labs website 1
that now displays a law enforcement seizure
notice. NetWire was quite powerful and had
been under ongoing development for many
years - for example, news on the World Wired
Labs website related to version updates went
back to June 2013. In addition to remote

GitHub
A GitHub project associated with this article
contains additional resources related to
NetWire stack analysis, including the open
source tool NwStacks. NwStacks supports
the analysis of Windows 7 (32/64-bit),
Windows 8.1 (64-bit), and Windows 10 (64-
bit) operating systems which have been
compromised by NetWire. You can find
this GitHub project at https://github.com/
ArsenalRecon/NetWireStackForensics.

 1. https://www.worldwiredlabs.com

control features which included uploading
and downloading files, NetWire offered more
insidious features such as proxy chaining
(making the identification of attackers more
difficult), “stealth” screenshots, key logging
and password “recovery.”

 MAIN FEATURE ADVANCED

Digital Forensics Magazine32

DFM52_032-046_Arsenal.indd 32DFM52_032-046_Arsenal.indd 32 02/05/2023 15:3902/05/2023 15:39

The NetWire host (a/k/a agent) running on a
victim’s computer receives control codes (a/k/a
commands) from a NetWire c2. The NetWire host
executable can be compiled as a 32-bit module
for Windows, GNU/Linux, Android, and Mac OS X.
While the c2 supports the detection of a Solaris
host, it does not appear that a Solaris host
was available in version 1.7. Traffic between the
NetWire host and its c2 is encrypted, except for
control codes and payload sizes. A complete
set of control codes that we have identified
so far can be found at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/NetWire1.7-controls.txt.

Control code data sent from a NetWire
c2 has the following format as seen in raw
network packets:

Bytes 0 – 3: Size of payload in little-endian
(4 bytes)
Byte 4: Control code (1 byte)
Bytes x – y: Encrypted payload of variable
length, depending on the control code and
its arguments

What is a process stack?
A process is essentially a program in its
running state. When a program is launched
and a process is started, memory is reserved
for the storage of crucial data that makes it
possible for the process to keep track of its own
execution, arguments to function calls, local
variables, and return addresses. This memory
is a process stack (hereafter, stack). The initial

stack structure is
determined by the
compiler when the
program is compiled.
With every function
call a stack frame is
created and stored
on the stack. A stack
frame contains
arguments, a return
address, and space
for local variables.
The size of a stack
frame depends
on the amount of
memory needed for
the execution of a
function. When a
function returns,

the stack pointer is reset to its value prior
to the function call. Figure 1 (from Wikipedia,
see https://en.wikipedia.org/wiki/Call_stack)
illustrates a sample stack.

In other words, the stack depth depends on
the number of nested function calls and the
sizes of their associated frames. During the
lifetime of a process, its stack may contain
one or more stack frames from previously run
functions left behind after the stack depth has
changed. Stack frames from previously run
functions may end up completely overwritten,
partially overwritten, or not overwritten at all
depending on the program’s design and the
specific code paths executed. 

Figure 1. Sample stack illustration

The size of a stack
frame depends
on the amount of
memory needed for
the execution of a
function. When a
function returns, the
stack pointer is reset
to its value prior to
the function call.

33

DFM52_032-046_Arsenal.indd 33DFM52_032-046_Arsenal.indd 33 02/05/2023 15:3902/05/2023 15:39

Memory address referencing
When NetWire is loaded, its private virtual
address is determined by a setting in the PE
header called ImageBase. Internal address
referencing for the program/code itself is
done by using Relative Virtual Address (RVA).
References to code as found in the stack will
be a Virtual Address, hereafter referenced as
“VA”, which is calculated by ImageBase and
RVA. There are settings in the PE header that
may override ImageBase. In NetWire 1.7 the PE
header's Optional Header, DllCharacteristics,
is set to 0x100 (NX_COMPAT). Because 0x40
(DYNAMIC_BASE) is not set, the load address
will always be that of the ImageBase setting
(0x400000), and code VA’s found on the
stack will thus match the address seen in
disassemblers such as IDA.

NetWire functionality involves the use of
various threads which in turn rely on multiple
stacks and usage of external heap memory. The
“main” thread (and its stack) consists of high-
level synchronization, socket handling, and
input (from the c2) handling. Additional threads
and their stacks are created based on the
usage of particular NetWire functionality. The
primary focus of the analysis described in this
article is on the main thread and its stack.

NetWire Components
The core elements of a NetWire process include:

•		Handling of sockets (the main thread
and its stack)

•		Processing of input controls from a c2
(the main thread and its stack)

•		Sending data back to c2. In most cases this
data is stored in an external heap where
encryption is applied

•		Keylogging (an additional thread that uses
another stack)

An Overview of the NetWire Stack
As explained previously, stack frames are
used in function calls and the presence of
previous frames may depend on the code
paths executed. As we will now see, the
part of the program that handles higher-level
synchronization and sockets does not reserve
much space on the stack. In contrast, the
part of the program responsible for managing
commands from the c2 reserves far more
space on the stack. The distinct code parts
consistently overwrite the same areas, leaving
the artifacts of the specific components in the
exact same fixed locations.

Stack size and layout (Visually)
Let's take a look at how some of the data
originating from NetWire’s startup code is
arranged on the stack. The table below shows
how the stack size grows when certain events
(code paths) occur.

Figure 2. Optional Header of executable

Figure 3. A stack is read from the bottom up. In the case of NetWire, the initial stack size is predictable

Stack frames from previously run functions
may end up completely overwritten, partially
overwritten, or not overwritten at all
depending on the program’s design
and the specific code paths executed.

The stack is usually found in a state with a size
of 0x33000 bytes (process is running but not
connected to c2) or 0x34000 bytes (connected
to c2). Thus, we will use the 0x34000 size as
a baseline in our analysis. We have prepared a
set of suitable bitmaps from stack snapshots
to represent the stack visually. Snapshots from

the states when the size is below 0x34000 are
normalized to 0x34000 with 00s prepended.
The bytes are then inverted (xor'ed with 0xFF)
to make 00's appear as white. Then a bitmap
of 16bpp was created with a layout of 256x416,
which then perfectly adds up with the stack
bytes as; 256 x 416 x 2 = 212992 – > 0x34000.

 MAIN FEATURE ADVANCED

Digital Forensics Magazine34

DFM52_032-046_Arsenal.indd 34DFM52_032-046_Arsenal.indd 34 02/05/2023 15:3902/05/2023 15:39

Figure 4. Stack snapshots of host with states 1 to 6 from left to right

Figure 5. Stack snapshot differences highlighted in red

Figure 6. Stack bitmap with address and offset mapping

The six snapshots in Figure 4 above are from
the following stack states:

1.		Entry point – size 0x3000
2.	First call – size 0x32000
3.	Second call – size 0x33000
4.	First five calls – size 0x33000
5.	Running, not connected to c2 – size 0x33000
6.		Connected to c2 – size 0x34000

In Figure 5, we have a set of bitmaps
with differences, as produced by the compare
functionality in Image Magick, taken from the
same snapshots and order. A shadow is applied
to the existing data, and the differences are
highlighted in red.

The bitmaps shown in Figure 6 establish
a visual understanding of the stack layout,
especially which areas are modified after
various events occur. The normalized stack
will thus have the following memory addresses
(left side) and translated file offsets (right side):

At this stage, we can spot some distinct
sections from the above bitmap:

•		Top. Data section that may change when
handling sockets and processing input.

•		Mid. Large area reserved for the raw input
received from c2.

•		End. This small data section is static
over the process's lifetime (caused by
the startup code).

We now have a rough idea of what kind of
data can be found in the various sections.

High-level code flow explanation
Let's take a look at the code. We will
begin with the function prologue (start) of
the most critical calls in the chain, starting
with the entry point. For simplicity, we will
split the explanation into 3 major levels
(A through C):

Level A
.text:00402BCB 	 mov 	 eax, 3002Ch
.text:00402BD0 	 call 	 sub_41CE38
.text:00402BD5 	 sub 	 esp, eax

Level A handles higher level synchronization,
socket handling, and basic control validation.
Incoming data from the c2 in the form of a
payload arrives to the host in smaller network
packets and is stored on the stack in chunks
of maximum 0x2ffff bytes. The next chunk is
stored on the stack when the current chunk
has been fully processed. This section of the
code runs in a loop checking socket status.
It is important to note that the size 0x2ffff
fits within the reserved function workspace
of 0x3002C. This area is represented by the
large white midsection in the bitmap Figures 4,
5, and 6 above.

Process initialization (before execution
arrives at the entry point) is found at the end,
untouched, for the lifetime of the process.
Thus, from the top of a typical stack (at the
bottom of Figure 6 with the higher addresses 

35

DFM52_032-046_Arsenal.indd 35DFM52_032-046_Arsenal.indd 35 02/05/2023 15:3902/05/2023 15:39

towards 0x230000) we will find some unique
data representing the absolute end. Or, more
precisely, the starting point.

Figures 7 and 8 show what the end of the
stack looks like initially and that the values at
addresses 22ff88 and 22ff80 are written to
the stack after the execution of the first few
instructions going into the first function call. The
data seen from 22ff8c and to the end at 22ffff
is the initial data setup by the kernel. The only
usage of this section of the stack is for validation.
For example, we can spot several references to
the entry point (see Figures 3 and 4). The entry
point address in this section represents a regular
process start of the standard host executable. In
the case of other non-regular methods of starting
the process, such as through process hollowing,
the entry point address in this section may have
a different value.

Level B
.text:00401092 	 push 	 esi
.text:00401093 	 push 	 ebx
.text:00401094 	 mov 	 eax, 1434h
.text:00401099 	 call 	 sub_41CE38
.text:0040109E 	 sub 	 esp, eax

This is the main function for the handling
of all input data (controls and associated
payloads) as sent from the c2 and is where
the most important data for forensic analysis
begins. This function is called whenever new
incoming data is detected in the sockets in level
A. It is responsible for decrypting the payload
and passing execution down to the next level
depending on the control code.

Level C
Lower-level functions performing various tasks
for processing control codes, called from level B.
Let's go back to level B and take a closer look.

In Figure 9, on the next page, where the
execution is halted at the main function’s start,
we will take a closer look at what the different
interesting data observations mean. On the left
side, where the c2 is visible, we can see TShark
filtering and printing the NetWire TCP data sent
from the c2. On the right side, we can see the
debugger attached to the host process and with
the stack visible in the lower “Dump 1” window.
The important observations are:

Figure 7. Debugger stopped at entry point

Figure 8. Debugger stopped in the start of the first call

•		The socket descriptor (0x0184) used for this
specific session. Address 0x1FFF60.

•		The current control (0xA6) being processed.
Address 0x1FFF64.

•		The pointer to the payload (0x1FFF7D).
Address 0x1FFF68.

•		The length of the payload (0x06).
Address 0x1FFF6C.

•		The control (0xA6) in raw as copied verbatim
from the socket. Address 0x1FFF7C.

•	 The encrypted payload (61 94 9E 29 BC 10)
in raw as copied verbatim from the socket.
Always null-terminated. Address 0x1FFF7D.

This is the main function for the handling of all input data
(controls and associated payloads) as sent from the c2 and
is where the most important data for forensic analysis begins.

 MAIN FEATURE ADVANCED

Digital Forensics Magazine36

DFM52_032-046_Arsenal.indd 36DFM52_032-046_Arsenal.indd 36 02/05/2023 15:3902/05/2023 15:39

Now we can verify that the encrypted data
sent from the c2 is stored on the host's stack
(red). In the TShark window we can see the
previous control being an A4 (listing of drives),
which does not have associated data. Moreover,
we can also verify that the first auth packet sent
(control 9B), which does not require decryption
(the 0x10 byte session key is updated 0x1FFF9D
– 0x1FFFAC), has portions of its payload data still
visible in the slack area represented by the green.

In Figure 10, we see the debugger has stepped
through the first few instructions of the main
function and stopped at the exact location
where the payload has been decrypted. The
encrypted 6 bytes (61 94 9E 29 BC 10) are now
decrypted (43 3A 5C 2A 2E 2A) in place at the
same location and always with a null byte at the
end. The current A6 control (File Explorer browse)

was sent with the argument "C:*.*". Also, note
the value for the stack pointer (0x1FEB20 which
translates to offset 0x2BA20), which will be
essential as an anchor in our parsing. All input
coming from the c2 is stored and decrypted in
the exact same way at the exact same location.
This location is only overwritten when new input
has arrived from the c2. Not all controls have
associated payload and thus very often we will
be able to find remnants of previous commands.
This knowledge is advantageous in forensic
analysis of the NetWire stack! The remainder
of this function contains a huge jump table,
essentially a switch statement for each of the
control codes. Each jump destination will make
one or more additional function calls (level C)
which we will see leaves various artifacts on
the stack. 

Figure 9. Debugger stopped at the function start before decryption

Figure 10. Debugger stopped right after decryption

37

DFM52_032-046_Arsenal.indd 37DFM52_032-046_Arsenal.indd 37 02/05/2023 15:3902/05/2023 15:39

Where do we start?
Before delving into NetWire stack analysis,
we need to establish an anchor that helps
us identify a NetWire stack amongst other
data. As digital forensics practitioners who
often deal with disk images as opposed to live
computers, we need to dig into places on the
disk where memory may have ended up – for
example, Windows swap (pagefile.sys). With
a bit of trial and error we have found that
the lower area of level B as mentioned above
(towards address 0x1FEB20) is the ideal anchor.
At a session start when connecting to the c2
a number of artifacts are stored in the stack
in addresses that, to a varying degree, are
re-used as buffers. Some of these buffers are
never or rarely overwritten. We have defined
four such addresses and are providing a
complete table showing how and when each
of them change. This table is available on
GitHub at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx (sheet Buffers_matrix).

The addresses/offsets of the buffers we
are interested in:

•	 buffer 0 	 0x1FEB60 / 0x2B60
•	 buffer 1 	 0x1FEBA0 / 0x2BA0
•	 buffer 2 	 0x1FECA4 / 0x2CA4
•	 buffer 3 	 0x1FEF00 / 0x2F00

During a session start (the initial auth to c2
when the 9B control is sent) the buffers are
populated with the following data before being
sent to the c2:

•	 buffer 0:	 hostname
•	 buffer 1: 	 username
•	 buffer 2: 	 a custom formatted string,

representing a bitmask for the victim’s OS.
See sheet “Host_OS” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

•	 	buffer 3: 	 a custom formatted string,
representing various host details. See
sheet “Host_details” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

In Figure 11, we see how the anchor area and

buffer 0 – 2 looks initially after the 9B control
when a session is established.

Since buffer 3 will be part of what we
decode, it is important to know exactly what it
contains. The complete breakdown of the initial
data in buffer 3 is shown in Figure 13.

You can cross check this breakdown
with the table in sheet “Buffers_matrix”
in the spreadsheet at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

Referencing back to Figure 9, we can see the
code at 004010A0 and 004010A7 where the
control code is copied to 0x1FEB5C / 0x2B5C.

Since the hostname stays untouched for the
lifetime of a session, we have a perfect spot to
build a signature from, at the heart of the most
compelling data. We can now build this byte
level regex:

[\x97-\xE8] + .{3} + <hostname> + \x00\x00\x00

Which means:

•		1 byte for a valid control code
•		3 bytes of anything
•		Variable byte length for the actual hostname

formatted in hex
•		3 bytes of 00's

This is a rather simple regex, so any
code involved in processing the hits will need
additional validation. For this validation we

Figure 11. The anchor

Figure 12. Buffer 3 right after a session is established

Figure 13. Buffer 3 containing host details

have provided a proof of concept (POC) tool
named NwStacks on GitHub at https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/NwStacks. The memory address
pointers of a NetWire process may change
depending on how it was executed. However,
the actual address, as seen in memory on
the main thread's stack, is not crucial to our
analysis as long as we can identify the data
on disk and work our way from a translated file
offset. The data points we will use always have
a fixed relative distance between them, thus
making identification and validation possible.
We will call these “crucial data points” in the
rest of this article. The fixed distance is caused
by the stack frame for the given function call
(except for calls going to external DLLs, which
may differ between Windows versions) always
having the same size regardless of the control
codes and payloads being processed.

For most situations when a connection to a
c2 has been established, the stack size will be
a minimum of 0x34000 bytes. The stack size
will expand to 0x35000 bytes in a few well-
defined situations. Our research has shown that
when the size has grown to 0x35000 bytes, the
data in the first 0x1000 bytes contains nothing

 MAIN FEATURE ADVANCED

Digital Forensics Magazine38

DFM52_032-046_Arsenal.indd 38DFM52_032-046_Arsenal.indd 38 02/05/2023 15:3902/05/2023 15:39

useful. For the analysis described in this article,
we have settled on using the size 0x34000 as
a baseline. That means for any search hit on
the byte regex described above, we will need
to assume that the stack begins 0x2b5c bytes
before the signature hit and then treat the
following 0x34000 bytes as the full stack.

Validation
Our next step will be to validate certain crucial
data points within the stack to determine their
validity. In the remainder of this article, we will not
refer to memory addresses unless specifically
needed and instead refer to the file offsets in hex
notation with dec in brackets. A small subset of
the validation checks could look like this:

•	The VA at 0x2B1C (11036) is valid
•	The socket descriptors at 0x3F60 (16224) and

0x3F78 (16248) match (they might differ in the
case of a reconnect)

•		Pointers at 0x2B38 (11064), 0x2B3C (11068)
and 0x2B40 (11072) are actually pointing to
buffer 0, 1 and 2

•		Valid controls at 0x2B5C (11100) and 0x3F7C
(16252) + they match

•		The length of payload at 0x3F6C (16236) is
valid, considering the current control

•		The string formatting definition prior to buffer
3 is valid, at 0x2EE8 (12008) (missing if the
connection is reset and socket descriptor is
FFFFFFFF)

•		The VA at 0x3F50 (16208) is valid
•		The VA at 0x3F5C (16220) is valid
•		The value of 0003002C is present at

0x22FF80 (2293632)
•		The VA 00402BD5 is present at 0x22FF88

(2293640)

What data in the stack is not helpful for our
analysis?

•		Addresses to heap memory
•		Addresses to functions in DLLs loaded

(kernel32.dll, msvcrt.dll etc)
•		Socket descriptors (can be used as validation

within a given stack, but may change for a
different process or session)

Significant artifacts we can use in our analysis!
By now, we have a good understanding of the
layout of the stack and how to find and validate
that data – including data that needs to be
treated carefully and what data we can ignore.
The most significant artifacts which will be
useful in our analysis are:

0)
The last return address pushed to the stack in
level B (function 00401092) is stored at 0x2B1C
(11036). See a full listing in our spreadsheet
at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx. Most often (in the case of a ping)
this value is 00401147 which originates from this
code section:

We can use this value for further validation
and for the understanding of #6 described below.

1)
Buffer 1 – 3
(Based on the table within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx) We can use this information in
multiple ways. The presence of data (or the lack
of data, represented by the amount of zeroed
data), and even in combination. For example,
some actions always leave specific data behind,
whereas other actions never interact with these
buffers. Some actions wipe the buffer with a
specific amount of 00 before use, whereas
others never wipe and simply overwrite and
leave "slack" data behind. For some actions
that leave data behind, the data format is
unique enough to tell which control command it
originated from.

As digital forensics
practitioners who
often deal with
disk images as
opposed to live
computers, we
need to dig into
places on the disk
where memory may
have ended up.

.text:0040111F 		 movzx 	 edx, [esp+8+arg_30] ; jumptable 0040111D case 151

.text:00401124 		 mov 	 eax, [esp+8+s]

.text:0040112B 		 mov 	 [esp+8+lpValueName], 0 ; int

.text:00401133 		 mov 	 dword ptr [esp+8], 0 ; char *

.text:0040113B 		 mov 	 [esp+8+var_4], edx ; int

.text:0040113F 		 mov 	 [esp+8+Size], eax ; s

.text:00401142 		 call 	 sub_408B8F ; Send the default reply packet (command 97).

.text:00401147 		 jmp 	 loc_402B45 ; Nothing more to do, jump to end.

2)
Timestamp
At 0x3C4C (15436), there is a 64-bit timestamp
(in local time) written on every socket event.
We can use this timestamp to determine from
which point in time the stack is from. When
a session is active, a function at 00408F43
contains a loop where the socket is checked
with a 15-second timeout. The loop goes from 3
to 0; upon reaching 0, a 98 control is sent to the
c2. On the c2 there are settings for answering a
host ping and also to actively send ping requests
to hosts. If both settings are deactivated on the
c2, the timestamp is updated every 15 seconds.
However, the timestamp will be updated even
more frequently if other controls are actively
sent from the c2. If both settings are deactivated
on the c2, and a 98 control is triggered from the
host, data in area 0x3AB4 – 0x3BEF (15028 –
15343) will be updated with irrelevant content.

3)
c2 hostname
At 0x3068 (12392), there may be a remnant
from the initial connection to the c2, which
is the c2 domain name. If this area is zeroed
(the area covered by buffer 3), one of the
actions listed within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx must have been executed.

4)
Control
Part of the validation is to check 0x2B5C (11100)
and 0x3F7C (16252). Because of the frequent ping
requests, the current control is very often 97. 

39

DFM52_032-046_Arsenal.indd 39DFM52_032-046_Arsenal.indd 39 02/05/2023 15:3902/05/2023 15:39

5)
Payload
The payload bytes start at 0x3F7D (16253). This
area is never wiped. Any data here passed as
an argument to control will overwrite existing
data with the size of the current payload and
with a null termination. For some of the controls
that do not have an argument (such as 97, the
ping), the size is 0, and the first byte here is
00. In many cases, we will find the remnants of
previous payloads here. The complete payload
area stretches from 0x3F7D (16253) to 0x22FF7B
(2293627), giving it a maximum size per block of
0x2FFFF (196607). The block size is relevant when
a payload from the c2 has a size beyond 0x2FFFF
(196607), in which case it is split up into 0x2FFFF
(196607) blocks. This happens only with file
uploads when the file size is larger than 0x2FFFF
(196607). In the case of a file upload, the current
block size may be found as a remnant in the lower
24 bits of the uint32 at 0x1FEAF8 / 0x2AF8, which
we will take a closer look at later in this article.
In the cases where no upload of significant size
has arrived, there will often be remnants from
the initial 9B control during the establishment
of the connection to the c2. The payload in this
situation is always of size 0x3E (62) and looks
like random data caused by encryption (last
byte at 0x3FBA (16314)). Note that the area from
0x22E150 (2285904) may contain remnants
from the initial startup of the process (the "end"
section described for the bitmaps at the top). For
a full listing of all c2 actions and sample payloads
decrypted, see https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Decrypted-
payloads.txt.

Level C artifacts are caused by the lower-level
functions when processing controls. This is the
topmost area in the "Top" section described in
the bitmaps. Data resolved in this location is, to
a large degree, caused by calls to the winapi,
and thus some addresses where data ultimately
gets stored may be OS-dependent. Depending
on how and where the stack was found, some
of this area may be missing or overwritten. This
is especially likely the deeper in the stack the
data was stored. Treat the following items with
care. In our tool NwStacks, this is dynamically
resolved. The most significant File Explorer /
Key Logs usage remnants are as follows.

Note
Ping requests overwrite portions of a 0x340
(832) byte area at 0x27F0 – 0x2B30 (10224 –
11056). Take this into consideration.

6)
File Explorer init (drive listing) at 0x1B0C (6924).
This is caused by a call to kernel32!GetLogic
alDriveStringA. The location is constant for all
operating systems. It is one of the few situations
where the full output data sent to the c2 is stored
directly on the stack used by the main thread
(due to its small size). Each entry representing
a volume is 4 bytes long. The full data set size
is 0x1AFC (6908). At 0x1AEC, there is a return
address (VA) written of 004095E4. See our
NwStacks tool for validation and detection.

7)
The 004095ED function, which is used for both
regular file explorer browse (A6 control) and
key logger reader/browse (CC control), leaves
somewhat unique artifacts often visible in this
larger area. The processing of these controls will
return details from the file system (type, size,
name, timestamp), and it uses a series of winapi
calls to get the raw data before formatting it and
sending it back to the c2. We will take a closer
look at how it works, starting with the function
epilogue (start):

.text:004095ED

.text:004095ED 	 push 	 edi

.text:004095EE 	 push 	 esi

.text:004095EF 	 push 	 ebx

.text:004095F0 	 sub 	 esp, 410h

Here we immediately see the workspace of
this function being reserved as 410h. Effectively
the esp has been reduced from 0x1FEB20 to
0x1FE700 after going through the epilogue.

It turns out this function call chain will go
quite deep and use the area stretching back to
0x1FDEE4. That leaves 0x1FEB20 – 0x1FDEE4
= 0xC3C bytes of stack data relating to this
function's processing of file system data. As
we will see, this information will help us further
understand why certain data is found in this
region of the stack. The actions performed in
this function are:

A. Retrieve directory information based on
buffer 2 – > kernel32!FindFirstFileA – >
(ntdll!NtOpenFile + ntdll!NtQueryDirectoryFile.

B. Iterate through all items, and retrieve file
system details – > kernel32!FindNextFileA

C. Extract the details such as attribute type,
name, size, and the last write timestamp

D. Convert timestamp to UTC – >
kernel32!FileTimeToSystemTime

E. Format the data in a special way as is
expected on the c2 end – > msvcrt!_vsnprintf

F. Differentiate on files vs folders in how the
formatting is done (folders don't have size.

G. Each item is formatted and prepared for output
and is then copied to a separate heap memory
location

H. When all items are done, send the result back
to the c2

Now let's go through the most useful data
that we can find here, starting with the topmost
data (the deepest point on the stack that this
function went to):

7a)
0x1F1C (7964)
As part of A) there will ultimately be a call
to ntdll!_RtlGetFullPathName_Ustr which is
needed for preparing the string before calling
ntdll!NtOpenFile.

Deeper in the call chain within
kernel32!FindFirstFileA there will ultimately be
a call to ntdll!_RtlGetFullPathName_Ustr which
is needed for preparing the string before calling.

7b)
0x21F4 (8692)
As part of A) the call to ntdll!NtQueryDirectoryFile
will leave a FILE_BOTH_DIR_INFORMATION struct
of the target directory.

kernel32!FindFirstFileA – >
ntdll!NtQueryDirectoryFile

It is important to note that in the case
of a refresh/browse in File Explorer after an
upload, the 3 timestamps except CreateTime
are updated. 

Some actions always
leave specific data
behind, whereas
other actions never
interact with these
buffers. Some actions
wipe the buffer with a
specific amount of 00
before use, whereas
others never wipe
and simply overwrite
and leave “slack”
data behind.

 MAIN FEATURE ADVANCED

Digital Forensics Magazine40

DFM52_032-046_Arsenal.indd 40DFM52_032-046_Arsenal.indd 40 02/05/2023 15:3902/05/2023 15:39

ArsenalRecon.com sales@ArsenalRecon.com @ArsenalRecon

Registry ReconArsenal Image Mounter Hibernation Recon
Reconstruct active

memory and extract
multiple types (and levels)

of slack from Windows
hibernation files

Unlock the potential of
huge volumes of

Windows Registry data
and see how Registries

changed over time

Mount the contents of
disk images as “real”

disks on Windows® with
powerful and unique

digital forensics
functionality

“After many unsuccessful attempts to launch forensic
images into virtual machines with a popular digital
forensics tool, I decided to give Arsenal Image Mounter a
try. I’m very glad I did, because I was able to virtualize
forensic images from multiple suspects. AIM also
bypassed Microsoft cloud account passwords within the
virtual machines, so I was able to take valuable
screenshots for the US Attorney. In addition, I have found
AIM’s multiple methods of Volume Shadow Copy
exporting to be useful.”

-- ICE/Homeland Security Investigation

“Hibernation Recon has become DoD’s must-have tool
for extracting digital artifacts from Windows hibernation
files. Not only does Hibernation Recon properly
reconstruct active memory for all versions of Windows
when other tools fail, it is the only tool that extracts
various types of “slack space”, which has yielded critical
forensic artifacts for DoD’s foreign intelligence mission
that could not have been obtained any other way.”

-- United States Department of Defense

Making Maximum Exploitation of
Electronic Evidence More Accessible

DIGITAL FORENSICS TOOLS
BY DIGITAL FORENSICS EXPERTS

C

M

Y

CM

MY

CY

CMY

K

Arsenal Recon One Pager Final 2022Q3 ProPrint.pdf 1 7/25/22 5:04 PM

Arsenal Recon 1.indd 8Arsenal Recon 1.indd 8 09/06/2023 18:5309/06/2023 18:53

7c)
0x24A4 (9380)
During B-C a temporary copy of the WIN32_
FIND_DATAA structure for the next item is stored
here. This copy may be partially overwritten with
data from the ftLastWriteTime member.

(This only applies to a Windows 7 victim)

7d)
0x26FC (9980)
Last ret address pushed on the stack. When the
function is done it will be 409A89 or 409A2F.
0x2704 (9988) / Control A6 or CC.

7e)
0x2730 (10032)
The format statements used when feeding the
various data pieces through msvcrt!_vsnprintf.

7f)
0x2780 (10112)
During B) another copy of the WIN32_FIND_DATAA
structure for the next item is also stored here.

7g)
0x28E4 (10468)
During E) and F) the ftLastWriteTime timestamp
is taken from 0x1FE794 and outputs the string at
0x1FE8E4.

7h)
0x2904 (10500)
During G) – H) format full row for item.

8)
File Upload and Download.

Upload
At 0x2AEC (10988) the return address 41BCEB
is pushed to the stack only in the case of a file
upload. This is caused by the incoming AD control
closing the file handle. The address originates
from the function 0041BCA8, which is responsible
for closing certain file handles. The only other
case resulting in this code path being triggered
is for downloads, but because the outgoing AD
control is performed in a separate thread (not
the main thread as with incoming controls), the
address is not pushed to the stack used by the
main thread. In the upload case, the memory
address 0x1FEAF4 = 1 (0x2AF4 / 10996), and
the lower 24 bits of uint32 at memory address
0x1FEAF8 (0x2AF8 / 11000) equals the size of the
current/last chunk. The chunk size is written to
the stack at 0041BCA8 during the processing of
an incoming AC control at this code location:

Download
At 0x1FEA8 the return address 41C150 is pushed to
the stack. This is caused by the AB control, which
is effectively caused by the function located at
00401B66. Let's take a closer look at it:

It turns out that the 41C150 address in the
stack is written for uploads and downloads in
the same location. Still, because a new thread
is started for sending data back to the c2 with
the download, the address stays here in the
download scenario. For the upload scenario, the
closing of a handle with an incoming AD control
overwrites and leaves its unique fingerprint.
For the download scenario, memory address
0x1FEAF0 = 0 (0x2AF0 / 10992), and the 8 bytes
at memory address 0x1FEAF8 (0x2AF8 / 11000)
represents the 64-bit LastAccessTime timestamp
of the downloaded file. The timestamp is caused
by a call to GetFileattributesExA which generates
a WIN32_FILE_ATTRIBUTE_DATA struct at memory
address 0x1FEAEC (0x2AEC / 10988). This struct is
almost completely overwritten soon after, with the
exception of LastAccessTime member. In Figures
14, 15 and 16, let's just take a closer look at how
it happens with snapshots when execution has
been halted in debugger at 3 different locations
from the above code section.

Fortunately, the artifact in the 0x20 byte
area 0x1FEAE0 (0x2AE0 / 10976) – 0x1FEAFF
(0x2AFF / 11007) which is unique to uploads
and downloads is left untouched when a ping
overwrites the surrounding area. Even a file
explorer refresh/browse will not overwrite
the bytes used in this area specific to the
identification of upload/download. However,
other controls/actions may overwrite and
cause identification of upload/download
specific to this location to be impossible. See
our NwStacks tool for detection and validation.

Note
If the socket descriptor equals 0xFFFFFFFF, it
means the host is not connected to the c2. If
the host still needs to connect to the c2, the
buffer 0 – 4 will contain no useful information,
and the control + payload area at 0x3F7C+ will
be blank. If a previously established connection
gets dropped, the area at 0x3F7C+ will contain
the data last stored there.

Figure 16. Stack snapshot when execution is halted at VA 00401B95

Figure 15. Stack snapshot when execution is halted at VA 00401B40

Figure 14. Stack snapshot when execution is halted at VA 00401B3B

.text:0041C8FB 		 mov 	 [esp+2Ch+Count], 	 eax ; 	 Count

.text:00401B3B 		 call 	 sub_40AC70

.text:00401B40 		 mov 	 ecx, [esp+8+arg_1410]

.text:00401B47 		 mov 	 [ecx+218h], eax

.text:00401B4D 		 mov 	 [ecx+21Ch], edx

.text:00401B53 		 nop

.text:00401B54

.text:00401B54 	 loc_401B54: 		 ; CODE XREF: sub_401092+934‚Üëj

.text:00401B54			 ; sub_401092+A14‚Üëj

.text:00401B54 		 mov 	 eax, [esp+8+arg_1410]

.text:00401B5B		 mov 	 [esp+8+var_4], eax

.text:00401B5F 		 mov 	 [esp+8+Size], offset sub_41C150

.text:00401B66 		 call 	 sub_40B2AB

.text:00401B95 		 jmp	 loc_402B45

 MAIN FEATURE ADVANCED

Digital Forensics Magazine42

DFM52_032-046_Arsenal.indd 42DFM52_032-046_Arsenal.indd 42 02/05/2023 15:3902/05/2023 15:39

Wrap-up with a demonstration
We have recreated a realistic user scenario
with multiple file uploads and file deletion.
A series of stack snapshots have been taken,
one after each action from the c2, which we
have made available at GitHub https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleStackSnapshots/win7-32
(article). All the files we used for uploads are
available on our GitHub project at https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleFilesUploaded. Here is a
summary of our operations:

1) File Explorer open c:\share\sample_uploads

2) Upload of the file "My savings plan for 2023
– v1.4 (12.30.2022).pdf" to c:\share\sample_
uploads. File size is 54821 bytes

3) Execute a refresh in File Explorer to verify that
the file is uploaded

4) Upload a second file "file_w_33_0x40.txt" to
c:\share\sample_uploads
File size is 64 bytes.

5) Execute a refresh in File Explorer to verify that
the file is uploaded

6) Ping sent from the c2

The c2 was configured not to answer
or send pings to create some snapshots
without ping overwriting anything. Instead,
ping requests were actively sent from the
c2 using the NetWire UI, so that snapshots
could be taken to show what a ping overwrite
looks like.

Now, we will not analyze each of the six
stack snapshots here, as they are made
available for anyone wanting to verify the
results. But we will take snapshot three and
verify our defined points of interest.

Snapshot 3

Step 1: Validation

•		Signature was found at 0x2B5C, where we
see an A6 control, then three nulls and the
hostname.

•		The VA at 0x2B1C is valid: 004018ED.
•		The socket descriptors at 0x3F60 and 0x3F78

match: 0x0180.
•		The pointers at 0x2B38 (0x1EFEBA0), 0x2B3C

(0x1FEB60) and 0x2B40 (0x1FECA4) are as
expected. Substitute 0x1FC000 from each and
you'll see that they match what we defined as
buffer 0, 1 and 2.

Figure 17. Validation 1

Figure 18. Validation 2

Figure 19. Validation 3

Figure 20. Payload section

•		The control at 0x2B5C and 0x3F7C match:
0xA6.

•		The size of the payload at 0x3F6C looks valid:
0x1B.

•		The formatting at 0x2EE8 is present:
%c%.8x%s etc.

•		The VA at 0x3F50 is valid: 0040109E.
•		The VA at 0x3F5C is valid: 00402C27.
•		At 0x33F80 we find the expected value:

0003002C.
•		The VA at 0x33F88 is valid: 00402BD5

Step 2: Artifacts
a) Check payload. 

43

DFM52_032-046_Arsenal.indd 43DFM52_032-046_Arsenal.indd 43 02/05/2023 15:3902/05/2023 15:39

Buffer 3

Figure 22. Buffer 3

We can clearly see the data from the initial
connection has been wiped, leaving only a 0x30
byte. This artifact thus matches our suspected
file upload from the previous step, according
to the “Buffers_matrix” table at https://github.
com/ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx.

c) Check the socket timestamp.

Figure 23. Socket timestamp

At offset 0x3C4C, we find the 8 bytes
4002300DE61DD901 decoded as a 64-bit
timestamp from little endian format, equals:
2023-01-01 13:36:28.5073984.

d) Verifying the upload artifact. We already have
a strong indication that a file upload has occurred.

At offset 0x2AF8 (ref 8), we find the value
0xD625, which according to surrounding data
at 0x2AEC and 0x2AF4, indicates the size of
the last block for a file upload.

Figure 24. Size of uploaded file

As the file bytes start at the second byte in

the payload from an AC control, we will need to
copy 0xD625 bytes from offset 0x3F7E.

Figure 25. Payload end

We can see that the bytes ending at 0x115A2

indicate the end.

In the section for raw input from the c2, starting
at 0x3F7C we can see:

•		The control is A6, which is a File Explorer
browse command.

•		Taking the defined size of 0x1B bytes from
offset 0x3F7D gives us: C:\share\sample_
uploads*.*.

•		There is an expected null byte at 0x3F98
(0x3F7D + 0x1B).

•		We can spot more data after the current
payload, starting at 0x3F99; this strongly
indicates some other action before the current
0xA6.

b) Check buffers 1, 2, and 3 according to our
table in https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xlsx.

Buffer 1
In Figure 17, we see in buffer one at 0x2BA0
that there is a username visible. Also, other
data remnants are visible after the username,
indicating that a control that wipes the buffer
has not been executed in this session.

Buffer 2
At offset 0x2CA4 we can see data in buffer 2.
(Figure 21) Here we see a null-terminated string
that perfectly matches the browse command
seen in the previous step:

C:\share\sample_uploads*.*

But we can also see remnants of more data
in the buffer:

avings plan for 2023 – v1.4 (12.30.2022).pdf

It seems clear that the argument here
has been a file name, and according to the
“Buffers_matrix” table at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xlsx, there are only two
possible options. A file rename or a file upload.
Moreover, since 0x200 bytes was wiped earlier,
this strongly suggests a file upload occurred.

We can clearly see
the data from the
initial connection has
been wiped, leaving
only a 0x30 byte.

Figure 21. Buffer 2

 MAIN FEATURE ADVANCED

Digital Forensics Magazine44

DFM52_032-046_Arsenal.indd 44DFM52_032-046_Arsenal.indd 44 02/05/2023 15:3902/05/2023 15:39

Here is a side-by-side comparison of the copied
and original file bytes showing how the argument
overwrote the first few bytes to the A6 control.

Figure 26. File upload comparison

e) Check lower-level artifacts from File Explorer
and browse command.

(ref 6)
At 0x1AEC, we find the VA 004095E4, which is
the last return address pushed on stack within
the 00409508 function which is only called
when processing the A4 control. At 0x1AFC
we find the total size of the data which is 0xC.
The array of detected volumes are found from
0x1B0C – 0x1B17.

Figure 27. File Explorer detecting available drives

The decoded volume array;
A: – > Floppy Drive
C: – > Fixed Drive
D: – > CD-ROM Drive

(ref 7a)
At offset 0x1F1C we see the expected wchar
equivalent of the browse argument (as prepared
to NtOpenFile).

Figure 28. Low level analysis of offset 0x1F1C

(ref 7b)
At offset 0x21FC we also find the FILE_BOTH_
DIR_INFORMATION struct which includes the 4
$STANDARD_INFORMATION timestamps from the
directory being browsed.

Figure 29. Low level analysis of offset 0x21FC

Full translation;
CreationTime: 2022-12-31 13:35:53.6698984
LastAccessTime: 2023-01-01 13:36:08.9107187
LastWriteTime: 2023-01-01 13:36:08.9107187
ChangeTime: 2023-01-01 13:36:08.9107187
EndOfFile: 0
AllocationSize: 0
FileAttributes: 16 (directory)
FileNameLength: 2
EaSize: 0 

45

DFM52_032-046_Arsenal.indd 45DFM52_032-046_Arsenal.indd 45 02/05/2023 15:3902/05/2023 15:39

(ref 7d)
At 0x26fc we find the VA 409A89 and at 0x2704
we see the value A6, suggesting the low-level
browse related artifacts belong to the A6 control.

Figure 30. Low level analysis of offset 0x26FC

(ref 7f)
At 0x2780, we find a WIN32_FIND_DATAA struct
for the last item in alphabetic order found in the
directory browsed.

Figure 31. Low level analysis of offset 0x2780

Full translation;
FileAttributes: 32 (archive)
CreationTime: 2022-11-09 16:21:02.8045468
LastAccessTime: 2022-11-09 16:21:02.8045468
LastWriteTime: 2022-11-09 16:21:02.8357968
FileSizeHigh: 0
FileSizeLow: 24288
FileName: zzz.txt

(notice the slack data from the file name of a
previous file passed into the struct)

(ref 7g)
At 0x28e4 we find the formatted string of
LastWriteTime from the above struct:

09/11/2022 16:21:02.

Figure 32. Low level analysis of offset 0x28E4

(ref 7h)
At 0x2904, we find the details of the current/last
item formatted as returned to the c2;

32 zzz.txt 24288 09/11/2022 16:21:02

Figure 33. Low level analysis of offset 0x2904

 This field is of variable size, and just as we
saw in the WIN32_FIND_DATAA struct above,
slack data may be visible. Notice the 07 field
separator that is heavily used in NetWire.

Summary snapshot 3
This stack snapshot is from around 2023-01-01
13:36:28.5073984.

When File Explorer was initialized, three
volumes were detected: A:, C:, and D:.

The current A6 control is a File Explorer
browse with the argument C:\share\sample_
uploads*.* verified at three different levels.

A file ending with "avings plan for 2023 – v1.4
(12.30.2022).pdf" appears to have been uploaded
to C:\share\sample_uploads\ with almost the
entire content recoverable within the stack.

From low-level timestamps, the exact point in
time appears to be 2023-01-01 13:36:08.9107187.

The last executed A6 control was executed
sometime between 2023-01-01 13:36:08.9107187
and 2023-01-01 13:36:28.5073984.

A filesystem analysis has not been included
here, but it would be yet another set of artifacts
to compare the stack findings with. •

Snapshots
Our findings have been verified on Windows
7 32-bit and 64-bit, Windows 8.1 64-bit,
and Windows 10 64-bit. A collection of
stack snapshots for each OS is provided
at https://github.com/ArsenalRecon/
NetWireStackForensics/tree/main/
SampleStackSnapshots. We have done
some preliminary testing of the latest NetWire
(version 2.1), and the methodology outlined
here is still applicable to a large extent. There
are changes, though – for example, the stack
has shrunk to roughly 1/4 of the size in 1.7, and
in the pe header the DYNAMIC_BASE setting
is present in DllCharacteristics. Control codes
look to be the same. We may address version
2.1 more specifically in the future.

AUTHOR
Joakim Schicht is a Cloud Engineer at Vizrt,
Digital Forensic Analyst at Joakim Schicht
Consulting, and assists Arsenal with digital
forensics software development and casework.
Joakim enjoys writing code (https://github.com/
jschicht) and deciphering the unknown.

TECHNICAL EDITORS
Mark Spencer, Arsenal (https://ArsenalExperts.
com) and Brandon Levene, Lightforge Ventures
(https://www.lightforgeventures.com)

 MAIN FEATURE ADVANCED

Digital Forensics Magazine46

DFM52_032-046_Arsenal.indd 46DFM52_032-046_Arsenal.indd 46 02/05/2023 15:3902/05/2023 15:39

Arsenal Recon 2.indd 19Arsenal Recon 2.indd 19 09/06/2023 18:1009/06/2023 18:10

Arsenal Consulting.indd 2Arsenal Consulting.indd 2 08/06/2023 16:0308/06/2023 16:03

	DFM52_OFC_Cover - Online
	DFM52_032
	DFM52_033
	DFM52_034
	DFM52_035
	DFM52_036
	DFM52_037
	DFM52_038
	DFM52_039
	DFM52_040
	DFM52_041
	DFM52_042
	DFM52_043
	DFM52_044
	DFM52_045
	DFM52_046
	DFM52_047
	Arsenal Consulting

