Issue 52 ¢ Q12023

FORENSIC ANALYSIS |
of the NETWIRE ;
STACK ----

They said you couldn't determine that an attacker
using the NetWire RAT delivered particular files to
a victim's computer. They were wrong.

.

PLUS

B Rethinking Remote DFIR
B Challenges Detecting Email Scams
B Empowering Digital Forensics in Policing
Ml Regulars: News, Legal, IRQ & More! _ Ceisioo Tovado

9 772042

The Quarte!

pIGITAL

ALSO AVAILABLE FROI

ly Magazine for pigital

MAGAZINE

Anchors in Relative Time
takes an in- .prh
look at timelines: and highhgihi(sm
i hecking detal,
the importance of ch de
using a recent case In Turkey to
demonstrate the dangers.

- Latest News, 360
Book Reviews, “}Q
& much more inside!

Mat of
Android Permissif
Using Fuzzy Ha_s
Malware Class!

§ Forensics practitioners

What happens to our timelines when we have reason to believe
that critical dates and times from file systems cannot be trusted,
not even to be consistently inaccurate? explains...

/ INTERMEDIATE

Originally published in Issue 18, February 2014

igital forensics and incident
response (DFIR) practitioners use
timelines to efficiently identify and
better understand suspicious activity. The
use of timelines has always been a core
component of DFIR analysis (see Clifford
Stoll's work in The Cuckoo's Egg), but
over the last few years the importance of
timelines has been increasingly highlighted
in research [1], software [2] and training [3],

The foundations of timelines are
obviously built on dates and times. We
prefer timelines built on accurate dates
and times, but consistently inaccurate
dates and times, even in small clusters,
may be extremely valuable. What happens
to our timelines when we have reason
to believe that critical dates and times
from file systems, logs, embedded in
documents, etc. cannot be trusted, not
even to be consistently inaccurate?

We have confronted cases involving
such widespread date and time tampering
that the utility of “traditional” timeline
analysis came into question. We realized
that we had to dig deeper in these cases,
and began formalizing our practice of
identifying both legitimate and illegitimate
anchors in relative time.

Let's break down the concept of
identifying legitimate and illegitimate
anchors in relative time. Legitimate and
illegitimate anchors, (‘anchors’ are simply
solid events we can rely on) are events that
we can be confident are either legitimate
or illegitimate, and upon which we can
base additional analysis; sometimes
without the benefit of accurate dates and

BEYOND TIMELINES

A Y
N\

times or, without any associated dates and
times at all. Legitimate anchors used in the
past have involved Microsoft’s Windows
operating system being installed, starting
up, and shutting down.

Illegitimate anchors we have
identified have involved the introduction
of malware and anti-forensics tools (most
often, data scrubbers) and/or remnants
of their execution. “Relative time” refers
to the time in which events happened in
a certain order, but we cannot be certain
the dates and times associated with those
events (assuming that dates and times
related to those events exist at all) are
accurate. In fact, we are often certain
that the dates and times related to
these events are inaccurate.

The focus of this article is on anchors
within your electronic evidence (i.e.
internal anchors), but evidence does not
exist in avacuum; it exists in context with
external anchors that might include court
orders, video footage, historical events,
etc. The designation of legitimate and
illegitimate anchors should be guided
and supported by what you know about
the case and what you have leamed about
your evidence. Heavy doses of sanity
checking are important here. For example,
leveraging dates and times “from" external
sources (e.g. web browsing *content*)
within your electronic evidence. Also, in
order to apply these anchors to relative
time, we must be certain in what order
they occurred and for that we can only rely
on certain types of data which are not
often exposed by digital forensics tools.

N R

RELATIVE TIME
REFERS TO THE TIME

IN WHICH EVENTS
HAPPENED IN A
CERTAIN ORDER,
BUT WE CANNOT
BE CERTAIN THE
DATES AND TIMES
ASSOCIATED WITm
THOSE EVENTS "=
ARE ACCURATE.SZ.

=il

DIGITAL FORENSICS N

WIN! an iPod Nano

L O

.

1 ARSENAL...

ARTICLES 18 2
INGAZINE

APPLYING ANCHORS
IN RELATIVE

TIME

VY

Our most powerful weapon reveals sophisticated evidence
tampering which led to /ournahsts wrongful imprisonment,

explains

Originally published in Issue 27, May 2016

veryone said it was the malware.

Everyone, including digital forensics

experts at universities and consulting
companies inthe United States and abroad,
was wrong. The failure of so many experts
to identify an unprecedented series of
electronic attacks against journalists, the
likes of which we may never see again,
almost resulted in the fascinating truth
being buried forever.

“Anchors in Relative Time” (“ART") is an
analysis technique described in my article
“Beyond Timelines ~ Anchors in Relative
Time” published in Digital Forensics
Magazine Issue 18. As a quick summary,
this technique involves identifying
legitimate and illegitimate anchors within
electronic evidence that can be placed in
relative time (time in which events have
happened in a certain order) regardless
of whether dates and times associated
with those anchors are accurate. My last
article focused on three particular types
of anchors found on Microsoft Windows
(“Windows”) systems to which | now add
a couple more as highlighted in Table 1.

These types of anchors are particularly
useful when determining the order in
which events have occurred, regardless of
any associated dates and times, as they
normally increment in the order events
have occurred. See the Definitions section
at the end of this article for more details
on each anchor type and source. Important
events in our cases have included Windows
starting up and shutting down, malware
introduction and execution, and critical
documents being created and deleted.

Odatv is a secular news organization
founded in 2007 with a reputation for
being critical of Turkey’s government,
controlled since 2002 by the Islamic Justice
and Development Party (a.k.a. the AKP, in
Turkish, Adalet ve Kalkinma Partisi or AK
Parti). The Odatv website, odatv.com, is
one of the most popular websites in Turkey.

In February and March 2011, the Turkish
National Police began a series of raids and
arrests involving Odatv. Critical electronic
evidence seized during the raids appeared
to connect Odaty employees and supporters
to the Ergenekon terrorist organization. In
November 2011, an indictment in essence
charged Odatv with being the media wing
of Ergenekon and singled out 14 Odatv
employees and supporters. The indictment
was based on electronic documents seized
during the raids by the Turkish National
Police, leading to the imprisonment of
110f the 14 suspects

Banis Pehlivan, whose Odatv computer
is the focus of this article, is a well-known
investigative joumalist, editor, producer
and author, who worked at Odatv since its
2007 origin. He was among those arrested in
February 2011, and was imprisoned for a year
and a half (February 14, 2011~ September 14,
2012) based on documents recovered from

Anchor Type Anchor Source

Log Sequence Numbers (“LSNs”)
Record Numbers (Sequence Number 15)
Securitylds

Update Sequence Numbers (“USNs”)
RecordNumbers or EventRecordiDs

Table 1. Anchor Summary.

ERGENEKON

Ergenekon is an alleged secularist

“deep state” in Turkey with ties to the
military, academia, NGOs, and the media.
Ergenekon members were charged

with plotting to overthrow the Turkish
government in a series of 15 indictments
between 2008 and 2011

:_EDGEHAMME
Sledgehammer involves the alleged
planning of a Turkish military coup in
response to the election of the AKP. Forged
documents critical to the Sledgehammer
trial include purported plans to bomb
mosques, shoot down a fighter jet,
and ultimately overthrow the Turkish
government. ART analysis revealed the
true nature of the forged documents.

NTFS SLogFile

NTFS SMFT

NTFS $Secure

NTFS SUsnjrnl

Event Logging or Windows Event Log

DIGITAL FORENSICS

both his Odatv and personal computers.
As you will soon lear, those documents
were not quite what they seemed.

Arsenal has extensive experience
uncovering evidence spoliation and we
are sceptical of any evidence related to
Ergenekon and other high-profile Turkish
trials, such as Sledgehammer.

The presence of malware on Odatv-
related computers (Baris Pehlivan’s Odaty
and personal computers, Miyesser Yildiz's
personal computer) has been documented
in a cursory way in many technical reports
While malware was in fact found on Mr.
Pehlivan’s Odatv Computer, it was readily
apparent after applying ART that malware
was not resporsible for the creation and
deletion of the incriminating documents.

WINDOWS STARTURS AND

SHUTDOLNS PER EVENT

LOG SERVICE
To become properly oriented witha piece
of evidence using ART it s often useful
toidentify “legitimate” anchors involving
Windows startups and shutdowns.
Identifying these anchors on Windows boot
volumes is relatively straightforward, but
identifying them on auxiliary volumes can
be quite challenging. Why then deal with
the frustration of identifying these anchors
not only on Windows boot volumes but also
on auxiliary volumes? Generally speaking,
operating in the initial fog of suspected
evidence tampering demands anchors on
every volume that can be relied upon, even
if their associated dates and times cannot be
trusted. More specifically, suspicious activity

RecordNumber Event Number

28202 6005,
28229 6006
28231 6005
28250 6006
28252 6005
28295 6006
28297 6005
28321 6006
28323 6005
28343 6006

Table 2. Partition 1~ System Event Log -
Windows Start/Stops

was found on both volumes of Mr. Pehlivan's
Odatv computer and these anchors proved
to be critical to understanding what actually
happened to them.

In order to identify anchors reflecting
Windows startups and shutdowns on Mr.
Pehlivan’s Odatv computer (on both the
Windows boot and auxiliary volumes) we
used a combination of Event Log service
events and file system transactions.

Starting with the Event Log service,
we identified startups and shutdowns of
that particular service, which are normally
consistent with Windows startups and
shutdowns. We attained a high level of
comfort with the values in Table 2 as
legitimate anchors by looking for signs of
tampering (e.g., inconsistencies between
date/times and the normal progression of
RecordNumbers) which would have affected
the Event Logs (finding none), reviewing
Event Log service startups and shutdowns
over time, comparing these events to file
system transactions discussed in this
article, and considering what we know
from external anchors such as the normal
behaviour of Odatv employees.

While we were comfortable that the
anchors from February 9, 2011 onward
mentioned in Table 2 were legitimate (their
dates and times were consistent with “real
time”, i.e., their dates and times could be
relied upon) we found RecordNumbers
28231/28250and 28323/28343 unusual
based on our review of Event Log service
startups and shutdowns over time as
well as our understanding of the normal
behaviour of Odatv employees.

Date/Time (UTC)
Event Log Service Start 02/09/2011 07:44:03
Event Log Service Stop 02/09/201117:58:46
Event Log Service Start 02/09/2011 20:09:14
Event Log Service Stop 02/09/2011 20110113
Event Log Service Start 02/10/2011 08:05:42
Event Log Service Stop 02/10/2011 18:03:32
Event Log Service Start 02/11/2011 07:39:13
Event Log Service Stop 02/11/2011 17:18:31
Event Log Service Start 02/11/2011 20:54:13
Event Log Service Stop 02/11/2011 20:55:16

= Event Log Service Start
= Event Log Service Stop

THE FAILURE OF

SO MANY EXPERTS

TO IDENTIFY AN
UNPRECEDENTED
SERIES OF ELECTRONIC
ATTACKS AGAINST
JOURNALISTS, THE
LIKES OF WHICH WE
MAY NEVER SEE AGAIN,
ALMOST RESULTED
IN THE FASCINATING
TRUTH BEING BURIED
FOREVER.

WINDOWS STARTURS
AND SHUTOOLWNS PER FILE
SYSTEM TRANSACTIONS ON
FIRST PARTITION
Next, we identified file system transactions
inthe NTFS $UsnJrnl and $LogFile metafiles
which uniquely identified Windows startups
and shutdowns.

After modelling Windows startups and
shutdowns on the Windows boot volume
(the first partition) of Mr. Pehlivan’s
Odatv computer overtime, we found that
$UsnJml transactions “DATA_TRUNCATION"
and “CLOSE+DATA_EXTEND+DATA_
TRUNCATION+SECURITY_CHANGE” involving
pagefile.sys uniquely and consistently
identified Windows startups and shutdowns.
See Table 3 for a st of those transactions
from February 9, 2011 onward

Il MAIN FEATURE ADVANCED

FORENSIC

ANALYSIS of the

NetWire Stack

They said you couldn't determine that an attacker using the NetWire RAT
delivered particular files to a victim's computer. They were wrong.

ur casework at Arsenal has
involved the analysis of computers
compromised by versions of the
NetWire remote access trojan
(RAT) up through 1.7 R11. Although
the NetWire version we are focusing on in this
article is 1.7 R11 (released in 2018), and the
current version is 2.1, many of the concepts we
describe in this article still apply to the current
version. Please note that this article is focused
not only on NetWire 1.7 R11 but also on Windows
7 32-bit as the compromised operating system.
NetWire was used in one of our highest-
stakes cases to conduct long-term surveillance
and surreptitiously deliver incriminating
documents which were later used in criminal
prosecution. While simple artifacts related to
NetWire execution can be found in places such
as the Windows Registry and prefetch files, we
needed to know much more than when NetWire
was running on compromised computers. We
discovered that additional insight could be
found by analyzing the various portions of
memory used by NetWire that would sometimes
end up stored on disk. Most importantly among
these portions of memory is the stack used by
the main NetWire thread. You will learn more
about stacks and threads soon. NetWire stacks
(particularly the stack used by the main thread
which we focus on in this article), contain
information that includes - amongst many
other things - control codes sent by NetWire
command and control servers (hereafter
referred to simply as “c2”). We have found both

complete and partially intact NetWire stacks
in Windows swap (pagefile.sys), hibernation
(hiberfil.sys), crash dumps (memory.dmp),
and even in unallocated clusters. Due to the
unique structure of some data contained within
NetWire stacks, incredibly valuable information
about a NetWire operator’s activity conducted
on a victim’s machine can be recovered not
only from complete stacks within disk images
but from partially intact stacks as well. As
an example of this incredibly important
information, you may be able to identify (as
we did) where a NetWire operator uploaded a
particular file to on a victim’s computer, when
they uploaded the file, and even find content
from the uploaded file still residing in the stack.
Before we discuss NetWire stacks in more
detail, let’s get some basics out of the way.

What is NetWire?

NetWire was a popular multi-platform RAT
system until March 2023 when international
law-enforcement cooperation resulted in the
seizure of NetWire infrastructure and the arrest
of its administrator. Previously, the NetWire
system could be obtained by attackers a
variety of ways, one of which was purchase
from the official World Wired Labs website '
that now displays a law enforcement seizure
notice. NetWire was quite powerful and had
been under ongoing development for many
years - for example, news on the World Wired
Labs website related to version updates went
back to June 2013. In addition to remote

1. https://www.worldwiredlabs.com

GitHub

A GitHub project associated with this article
contains additional resources related to
NetWire stack analysis, including the open
source tool NwStacks. NwStacks supports
the analysis of Windows 7 (32/64-bit),
Windows 8.1 (64-bit), and Windows 10 (64-
bit] operating systems which have been
compromised by NetWire. You can find

this GitHub project at https.//github.com/

ArsenalRecon/NetWireStackForensics.

ﬁ

control features which included uploading
and downloading files, NetWire offered more
insidious features such as proxy chaining
(making the identification of attackers more
difficult), “stealth” screenshots, key logging
and password “recovery.”

h [oigital Forensics Magazine

The NetWire host (a/k/a agent) running on a
victim’s computer receives control codes (a/k/a
commands) from a NetWire c2. The NetWire host
executable can be compiled as a 32-bit module
for Windows, GNU/Linux, Android, and Mac 0S X.
While the c2 supports the detection of a Solaris
host, it does not appear that a Solaris host
was available in version 1.7. Traffic between the
NetWire host and its c2 is encrypted, except for
control codes and payload sizes. A complete
set of control codes that we have identified
so far can be found at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/NetWirel.7-controls.txt.

Control code data sent from a NetWire
c2 has the following format as seen in raw
network packets:

Bytes 0 - 3: Size of payload in little-endian
(4 bytes)

Byte 4: Control code (1 byte]

Bytes x - y: Encrypted payload of variable

length, depending on the control code and
its arguments

What is a process stack?

A process is essentially a program in its

running state. When a program is launched

and a process is started, memory is reserved
for the storage of crucial data that makes it
possible for the process to keep track of its own
execution, arguments to function calls, local
variables, and return addresses. This memory
is a process stack (hereafter, stack). The initial

Stack Pointer > top of stack

Locals of
DrawlLine

Frame Pointer ———>

Return Address

’

Parameters for
DrawlLine
Locals of
stack frame DrawSquare
for Return Address
Dr aquuare
subroutine Parameters for

DrawSquare

stack frame
for
DrawLine
subroutine

Figure 1. Sample stack illustration

The size of a stack
frame depends

on the amount of
memory needed for
the execution of a
function. When a
function returns, the
stack pointer is reset
to its value prior to
the function call.

stack structure is
determined by the
compiler when the
program is compiled.
With every function
call a stack frame is
created and stored
on the stack. A stack
frame contains
arguments, a return
address, and space
for local variables.
The size of a stack
frame depends

on the amount of
memory needed for
the execution of a
function. When a
function returns,

the stack pointer is reset to its value prior

to the function call. Figure 1 (from Wikipedia,
see https://en.wikipedia.org/wiki/Call_stack)
illustrates a sample stack.

In other words, the stack depth depends on
the number of nested function calls and the
sizes of their associated frames. During the
lifetime of a process, its stack may contain
one or more stack frames from previously run
functions left behind after the stack depth has
changed. Stack frames from previously run
functions may end up completely overwritten,
partially overwritten, or not overwritten at all
depending on the program’s design and the
specific code paths executed. [>

Il MAIN FEATURE ADVANCED

Memory address referencing

When NetWire is loaded, its private virtual
address is determined by a setting in the PE
header called ImageBase. Internal address
referencing for the program/code itself is
done by using Relative Virtual Address (RVA).
References to code as found in the stack will
be a Virtual Address, hereafter referenced as
“VA”, which is calculated by ImageBase and
RVA. There are settings in the PE header that
may override ImageBase. In NetWire 1.7 the PE
header's Optional Header, DlICharacteristics,
is set to 0x100 (NX_COMPAT). Because 0x40
(DYNAMIC_BASE) is not set, the load address
will always be that of the ImageBase setting
(0x400000), and code VA’s found on the
stack will thus match the address seenin
disassemblers such as IDA.

NetWire functionality involves the use of
various threads which in turn rely on multiple
stacks and usage of external heap memory. The
“main” thread (and its stack) consists of high-
level synchronization, socket handling, and
input (from the ¢2) handling. Additional threads
and their stacks are created based on the
usage of particular NetWire functionality. The
primary focus of the analysis described in this
article is on the main thread and its stack.

NetWire Components
The core elements of a NetWire process include:

o Handling of sockets (the main thread
and its stack)

e Processing of input controls from a c2
(the main thread and its stack)

e Sending data back to ¢2. In most cases this
data is stored in an external heap where
encryption is applied

o Keylogging (an additional thread that uses
another stack)

An Overview of the NetWire Stack

As explained previously, stack frames are
used in function calls and the presence of
previous frames may depend on the code
paths executed. As we will now see, the

part of the program that handles higher-level
synchronization and sockets does not reserve
much space on the stack. In contrast, the
part of the program responsible for managing
commands from the c2 reserves far more
space on the stack. The distinct code parts
consistently overwrite the same areas, leaving
the artifacts of the specific components in the
exact same fixed locations.

28 S

Memb Offset Size Value IMeaning

“File: Host exe 3

@ Dos Header Magic 000000398 Word 0108 PE32

[Z] Nt Headers MajorLinkerVersion 0000009A Byte 02
() File Header = 5 -
MinorLinkerVersion 00000098 Byte 19
(5] Data Directories [x] SizeOfCode 0000009C Dword 0001C400

— (3 Section Headers] SizeOfInitializedData 000D00AD Dword 00004800

— | Export Directory

— [Import Directory SizeOfUninitializedData 000000A4 Dword 00006800

— DDRelocation Directory AddressOfEntryPoint 000000A8 Dword 000028CB text

— %, Address C

— wﬁ' Dependency Walker BaseOfCode 000000AC Dword 00001000

— %), Hex Editor BaseOfData 00000080 Dword 0001E000

= ‘ﬁ,ldsilﬁa’

— 4, Import Adder ImageBase 00000084 Dword 00400000 q-—

— %, Quick Disassembler SectionAlignment 000000B8 Dword 00001000

— &, Rebuilder —

= ‘Q,,chouce (= FileAlignment 000000BC Dword 00000200

— 9 UPX Urility MajorOperatingSystemVers... | 000000C0 Word 0004
MinorOperatingSystemVers...| 000000C2 Word 0000
MajorimageVersion 000000C4 Word 0001
MinorimageVersion 000000C6 Word 0000
MajorSubsystemVersion 000000C8 Word 0004
MinorSubsystemVersion 000000CA Word 0000
‘Win32VersionValue 000000CC Dword 00000000
SizeOflmage 000000D0 Dword 0002C000
SizeOfHeaders 000000D4 Dword 00000400
CheckSum 00000008 Dword 00030764
Subsystem 000000DC Word 0002 Windows GUI
DIICharacteristics 000000DE |Word 0100 <Efetrrmee——
SizeOfStackReserve (000000EQ Dword I 00200000

1 i

Figure 2. Optional Header of executable

Stack size and layout (Visvally)

Let's take a look at how some of the data

originating from NetWire’s startup code is

arranged on the stack. The table below shows

how the stack size grows when certain events

(code paths) occur.

Address Size VA State

Ox1FBO00O 0x35000

0x22FFFF 0x0

0Ox1FC000 0x34000 00402D11
0x1FD000 0x33000 00402BDC
0Ox1FEOOO 0x32000 00402BDS
0x22D000 0x3000 00402BCB

- Only with registry use, password recovery (web or mail)

After first call to 401092 when auth is sent to c2.

After second call (not yet connected to c2)
After first call
Entry point

Figure 3. A stack is read from the bottom up. In the case of NetWire, the initial stack size is predictable

Start

The stack is usually found in a state with a size
of 0x33000 bytes (process is running but not
connected to ¢2) or 0x34000 bytes (connected
to c2). Thus, we will use the 0x34000 size as
a baseline in our analysis. We have prepared a
set of suitable bitmaps from stack snapshots
to represent the stack visually. Snapshots from

the states when the size is below 0x34000 are
normalized to 0x34000 with 00s prepended.
The bytes are then inverted (xor'ed with OXFF)
to make 00's appear as white. Then a bitmap
of 16bpp was created with a layout of 256x416,
which then perfectly adds up with the stack
bytes as; 256 x 416 x 2 = 212992 - > 0x34000.

Stack frames from previously run functions
may end up completely overwritten, partially
overwritten, or not overwritten at all
depending on the program’s design

and the specific code paths executed.

[Dbigital Forensics Magazine

o e S B S R

Figure 4. Stack snapshots of host with states 1to 6 from left to right

The six snapshots in Figure 4 above are from
the following stack states:

1. Entry point - size 0x3000

2. First call - size 0x32000

3. Second call - size 0x33000

4. First five calls - size 0x33000

5. Running, not connected to c2 - size 0x33000
6. Connected to ¢c2 - size 0x34000

In Figure 5, we have a set of bitmaps
with differences, as produced by the compare
functionality in Image Magick, taken from the
same snapshots and order. A shadow is applied
to the existing data, and the differences are
highlighted in red.

Figure 5. Stack snapshot differences highlighted in red

0x1FCO000 | .

e 0x000000

0x230000 EE 0x340000

Figure 6. Stack bitmap with address and offset mapping

The bitmaps shown in Figure 6 establish
a visual understanding of the stack layout,
especially which areas are modified after
various events occur. The normalized stack
will thus have the following memory addresses
(left side) and translated file offsets (right side):
At this stage, we can spot some distinct
sections from the above bitmap:

e Top. Data section that may change when
handling sockets and processing input.

e Mid. Large area reserved for the raw input
received from c2.

e End. This small data section is static
over the process's lifetime (caused by
the startup code).

We now have a rough idea of what kind of
data can be found in the various sections.

High-level code flow explanation

Let's take a look at the code. We will

begin with the function prologue (start) of
the most critical calls in the chain, starting
with the entry point. For simplicity, we will
split the explanation into 3 major levels

(A through C):

Level A

.text:00402BCB mov eax, 3002Ch
.text:00402BD0O call sub_41CE38
.text:00402BD5 sub esp, eax

Level A handles higher level synchronization,
socket handling, and basic control validation.
Incoming data from the c2 in the form of a
payload arrives to the host in smaller network
packets and is stored on the stack in chunks
of maximum Ox2ffff bytes. The next chunk is
stored on the stack when the current chunk
has been fully processed. This section of the
code runs in a loop checking socket status.

It is important to note that the size Ox2ffff

fits within the reserved function workspace

of 0x3002C. This area is represented by the
large white midsection in the bitmap Figures 4,
5, and 6 above.

Process initialization (before execution
arrives at the entry point) is found at the end,
untouched, for the lifetime of the process.
Thus, from the top of a typical stack (at the
bottom of Figure 6 with the higher addresses [>

Il MAIN FEATURE ADVANCED

towards 0x230000) we will find some unique
data representing the absolute end. Or, more
precisely, the starting point.

Figures 7 and 8 show what the end of the
stack looks like initially and that the values at
addresses 22ff88 and 22ff80 are written to
the stack after the execution of the first few
instructions going into the first function call. The
data seen from 22ff8c and to the end at 22ffff
is the initial data setup by the kernel. The only
usage of this section of the stack is for validation.
For example, we can spot several references to
the entry point (see Figures 3 and 4). The entry
point address in this section represents a regular
process start of the standard host executable. In
the case of other non-regular methods of starting
the process, such as through process hollowing,
the entry point address in this section may have
a different value.

Level B

.text:00401092 push esi
.text:00401093 push ebx
.text:00401094 mov eax, 1434h
.text:00401099 call sub_41CE38
.text:0040109E sub esp, eax

This is the main function for the handling
of all input data (controls and associated
payloads) as sent from the ¢2 and is where
the most important data for forensic analysis
begins. This function is called whenever new
incoming data is detected in the sockets in level
A. It is responsible for decrypting the payload
and passing execution down to the next level
depending on the control code.

Level C

Lower-level functions performing various tasks
for processing control codes, called from level B.
Let's go back to level B and take a closer look.

In Figure 9, on the next page, where the
execution is halted at the main function’s start,
we will take a closer look at what the different
interesting data observations mean. On the left
side, where the c2 is visible, we can see TShark
filtering and printing the NetWire TCP data sent
from the c2. On the right side, we can see the
debugger attached to the host process and with
the stack visible in the lower “Dump 1” window.
The important observations are:

Fle Vew Debug Trace Plugns Favourites Options Hep Aug 16 2020
COE 0 Ity taBeeEersis a0 RO

B cru uLogluNor.es | * ereskponts
;— - i
nréxmm

EB 63A20100

2
C74424 08 04000000 ms

895424 04 mov dword ptr ss:flespsall,
89042. ov_dword ptr ss:fespl
E8 18650000 - host 40913F
2 84c Test
~ OF84_F300¢ je | Fiost /402022
889424 1cooozoo edx, dword ptr ss:
884424 1 mw eax,dword ptr_ss:

| O castack

. [E=8 Bl =X

&~

“se | (o) sopt | @ symbos | © source | 2 References | []

Hide FPU

C7442. FEFFFEF MoV dword ptr ss:fesp+ 1sm FEFFFFFF
C7842 ,CODOSOO 00mov dword ptr ss:fesp [
884424 18 mov eax,dword ptr ss: les

800424 10000300 | Tea e, dword p(r’ Sst Iesp‘SO\)lfl

eax=-<kernel32.BaseThreadInitThunk>

.Text:004028CB host.exe:$28CB #1FCB <EntryPoint>

@oump1 | ewoump2 | @Soumps | & oumpa | mmmps | @ warch1 [iioc]

Address | Hi
"0022F e

>

C F 35 40
FrFOC[CB 28 40 0 3 0000 00
£

ﬂolq\;oolvooonoca

EAX 7591EF2A <kernel32.BaseThread «
EBX 7FFDBOOD &"«“ptiu”
ECX 0000000 L4

ESP 0022FFSC HeTieuns
ESI 00000000
EDI 00000000

EIP 004028CE <host.EntryPoint>

EFLAGS 00000246 =
>c 1 prary

B hi
022!
espC 8560c ntdl]. 7740360C
SSDi50) 7ePoB000 S wepT1ar
esp+1d] 7740FB1E msctP.7740FB1E

retgrn to kerne EF3CTD L

zFFDBOOQ &"«“ptilu
7403c0ci [reTyrnito ntdl1.774D360C trom
740F 1 msc(g 7740F818

FFDB &« ptiu”

I

FFFEEFFFE |End of SEH Chain

SaBEsss |mtd1l.774sesss
2E0AAF

00000000

0 774D350F |return to ntdll.774D350F from =
004028CB | ", " =
»

Command:

Default

| Paused | Dump: 0022FFBC -> 0022FFBC (0x00000001 bytes)

Figure 7. Debugger stopped at entry point

Fle View Debug Trace Plugns Favourtes Options Help Aug 16 2020

29 S0 ta 9y taloESePlhis A0 AP

| Time Wasted Debugging: 1:03:57:05

[ESRECR ==

Bcru | [Glog | L Notes] ® Breskports | = vemorymap | () calstack | smsed | Lo serpt | E’lwmbds | © souce | # References [[‘_[L]

eaxs=: 2C

-Text:0041CE3A host.exe:$1CE3A #1C23A

@oump1 | woump2 | wepump3 | wwpwfpa | s oumps A @ watch1 | e B
AscHA

Address |Hex

8 [004028D5 |return to host.00402805 from hi

FF1C|00 00 00 00 00 00 00

0022FF2C| 00 00 00 00 |Of 0 00 00 00,
00 00 00
00 00 0060

40 77

O 0
00 00 00 00

35 E3 48 77
3 4 2
0600 00 00

q|00 B8O FD 7F|..

EC|D
8033eFrc | oodly 0o oo

4

C | 7591EF3C r‘Eturn o kernel32.7591EF3C fri
0 | 7FFDBO0G «piu

0 FFD4
774D360C |return '(D ntd11.774p360C from
7740F! el Haore1s

*"’5" ok Hide FPU
35 00100000 B pREaET =
8D4C24 OC e ptr ss:llesprcl EAX]0003002: AT £
Sk 15, hostl4icesa EBX 7FFDB «“priu @
o0 81E9 00100000 ub ecx,1000 ECX 00000000 .
o 8309 00 ur dword ptr ds:[ecx],0 EDX 00402BCB W
ef0 2D 00100000 sub eax,’ J.OOO EBP 0022FF94
o 3D 00100000 cmp eax, ESP 0022FF80
o 77 EB ja host. 41c545 ESI 00000000
‘0 291 sub ecx,eax EDI 00000000
o 8365 00 or dword ptr ds:[ecx],0
- gg ax EIP 0041CE3A host.0041CE3A
of0 c3
ol0 B FaE. - Y =
° 20
o0 ~ FF25 80934200
° c 20
° 6 20
®|oosiceec | - FF25 7c934200
b K
[

c || 7FFoB &"«“priut

FEFFFFFE SEH chain
5 |Foheesss | s7asesss [

2rrcc | 002E0AAF
00000000 54

m
° o

S o8

5

| >

Zommand:

Default =

Passed | Dump: 0022FFBC -> 0022FFBC (0X00000001 bytes)

Figure 8. Debugger stopped in the start of the first call

e The socket descriptor (0x0184) used for this
specific session. Address Ox1FFF60.

o The current control (0xA6) being processed.
Address OXIFFF64.

e The pointer to the payload (OxIFFF7D).
Address OXIFFF68.

e The length of the payload (0x06).
Address OXIFFF6C.

e The control (0xA6) in raw as copied verbatim
from the socket. Address OxIFFF7C.

e The encrypted payload (6194 9E 29 BC 10)
in raw as copied verbatim from the socket.
Always null-terminated. Address OX1FFF7D.

[Time Wasted Debugaing: 1:03:58:37

This is the main function for the handling of all input data
(controls and associated payloads) as sent from the c2 and
is where the most important data for forensic analysis begins.

[oigital Forensics Magazine

»

File Action Media Clipboard View Help

B2 win7x86_vmware on MULTICOM-I9 - Virtual Machine Connection - o X

File Action Media Clipboard View Help

T5 NetWire Workst 4 joakim @ nwelient-PC - File Manager

)
File_View Tools Help | [Preerpiorer [rnaries —
HAl@2| T -2l
e
4 Name Size Type
Hondie P/ONS
Dmus2 2168167211

<

Tmestomp Rent
© 12/16/2022 12:10¢ 192
192
192
192
192
192
192

@ 121162022
1206/2022

22T

1
Hosts Online: 1 Active Ports: 1810, 20080, 4000, 4444

£ Type here to search 2

/38 Hostexe - PID: 578 - Module: hostexe - Thread: Main Thread 8D0 - x32dbg (Elevated] =N R |
Fle View Debug Trace Plugns Favourtes Options Help Aug 16 2020
ta w3 taleo2esfin ml BP

Log | (inotes | o Breakponts | = memorymap | () caistack | smseH | lof serpt | @) symbos
jg.00301002] T -

S
< source | £ References | []*]
Hide FRU

88 34140000 TP o
€8 9ABDOL00 EAX 00000184 [y
888424 44140000

C
838C24 4C140000

. 7 4&
8615_C8E74100
88842. 00
39¢2 cmp edx, eax

-~ 75 30 jne host.401103
888424 4C140000 Imoyv eax.dword otr s

I

@510

.Text:00401092 hostiexe:$109 ~
e} - - T Teturn to host. 00402011 from W .

% Dump 1 P 2] &% Dump 3

Date Modfied

B4 00 AG 00 00 00 ‘

g

29! €2 70

2298 56|49 34 DA C7

3 00 85|a0 43 08 T1
F

UU—UUUU U0 UU U000

00 00 00(00 00 00 00

°
2
n
a
A
8
oo
8
°
8
S
8
°
°
5
°
8
S
8
°
8
°
8
8

01FFFOC
QOLFFFEC| 00 00 00 00|00 00 00 00(00 00 00 00

,,
g
2
g
5
5
2
-

22
:
8
z
5
5
=
2
=
B
:
3
=
2
z

o
4
S
3
4
A

soo0

8888
8
°
8
S
°
8
°
°
S
°

0000000

002000EC(00 00 00 00(00 00 00 00(00 00 00 00
—1002000FC

Command:

|Dump: 0OIFFFSC -> 01FFFSC bytes)

2o @ €

i Paused

Figure 9. Debugger stopped at the function start before decryption

OE U tdwy taBoeEeehin nEBE @ -
LtLog | (i Notes | ® Breskponts | = MemoryMap | () calstack | =nsen | lof scrpt | @ symbos | < Source | £ References | []*]
< =

amp edx, eax = Z
Bt scuomo B0 IR g
5 c14 mov eax,dword ptr_ss:flesps14dc] 000G p
€74424 14 01000000mov dword ptr ss:flespild],l EAX 000000
Yovt oo per } EBX 7FFD6000 2 m

[esp+1448]:"c:\| [ECX O001FEAFB 1

m
888424 48140000 |mov eix,dword p

EDX FFFFFFFF
[esp+1448]:"c:\| | E8P nezz:swé/ :

894424 0C m s
888424 48140000 |mov eax,dword
424 0

894. mov dword ptr ESP 001FEB20 " t8
C€74424 04 80724200mov dword ptr s 728 ESI 00000000
C70424 mov_dword ptr ss: < m] »
8 CE460000 | €all host.405701 —
0FB64424 3C movzx eax,byte ptr ss:[esp:3c] « | Default (stdcal) v)5 I3 [C] Unlocked
2D 97000000 sub eax.97 T: [esp+d] 00427 0T, =
vt A1} > 2: [esp+8] O00LFFF83
0 Netwie 1 joakim @ nwelient-PC - File Manager =T 3: [espec] OOLFFFS3
byte ptr ss:[esp+3C]=[001FEBSCI=A6 ' " 4: [esp+l0] FFFFFFFF
File View Tools Help Fie Explorer FindFles | Hosher Transfers veeln Py g 5 asp+14] 00000001
" - - - 4 .Text:00401103 host.exe:$1103 #503 v
MA@ 7-2d R T AG ™ [host. 0042744
e @oump1 | @8oump2 | woump3 | @Wpumpa | woumps | @ watch1 | wiiocd (| 27350 -
[Name Sze Type DateModfied |Address |Hex ASCIT - 8
LFFFSC 2D 40 0084
‘“2““” i) 1rerec o5 $0 00 0010
1152 192.168.167.211 LFFF7C| q " "
LFEFSC €7 2C 85 E79: eJozkin o
FFFOC|CF 85 77 88|E il jentore
FFFAC|69 94 D5 26|1.
host. 00427244
FFFBC|00 00 00 00 |Of 3 f
FFFCC|00 00 00 0000 ey winnsi. 73405010
F0C|00 00 00 00(00 . P74CTICE fr
Ai R W ER R 774c77¢8 | return to ntdl1.774c77c8 from 1
FFFFC| 00 00 00 00 (Of 00000001
100/ 0 00 00 000 000000A¢
0001C| 00 00 00 00 (Of 6C63776!
0002C | Of 00 000 746E656¢
0003C| 00 00 00 00 |Of 0435021
< 0004C | Of 00 000 0000¢
: RE% B e de
00 00|00
Timestaap Req 0007¢| 00 00 00 000 0000
© 12/16/2022 12: 192 ngggc 00 00 000 10000
@ 12/16/2022 12: 192 0300 Joofnn, 0 10000
000AC| 00 00 00 00 |0
A 1211672022 12 192 000BC (00 00 00 00 |01 000D
"!UIS/NZZ 12 192 000CC| 00 00 00 00 |Of 0000
© 12/16/2022 12: 192 ugggg gg gg gg gg go 19000 ~
2‘1/‘5/2022 ISP g 000FC 100 00 00 00100 00 00 00100 00 00 00100 00 00 O S [< W | D
112:41PM
12/16/202 1212417192 omand T —
] Active ForE TR, TOOB T T | Paused | Dump: 001FFFSC -> OOIFFFSC (0X00000001 bytes) |Time Wasted Debugang: 1:04:39:30
A > 2115
- - O NO
A Type here to search i I\U} = Dﬂ e c 16122022 |

Figure 10. Debugger stopped right after decryption

Now we can verify that the encrypted data
sent from the c2 is stored on the host's stack
(red). In the TShark window we can see the
previous control being an A4 (listing of drives),
which does not have associated data. Moreover,
we can also verify that the first auth packet sent
(control 9B), which does not require decryption
(the 0x10 byte session key is updated OxIFFF9D
- OXIFFFAC), has portions of its payload data still
visible in the slack area represented by the green.

In Figure 10, we see the debugger has stepped
through the first few instructions of the main
function and stopped at the exact location
where the payload has been decrypted. The
encrypted 6 bytes (6194 9E 29 BC 10) are now
decrypted (43 3A 5C 2A 2E 2A) in place at the
same location and always with a null byte at the
end. The current A6 control (File Explorer browse)

was sent with the argument "C:*.*". Also, note
the value for the stack pointer (OXIFEB20 which
translates to offset 0x2BA20), which will be
essential as an anchor in our parsing. All input
coming from the c2 is stored and decrypted in
the exact sume way at the exact same location.
This location is only overwritten when new input
has arrived from the c2. Not all controls have
associated payload and thus very often we will
be able to find remnants of previous commands.
This knowledge is advantageous in forensic
analysis of the NetWire stack! The remainder

of this function contains a huge jump table,
essentially a switch statement for each of the
control codes. Each jump destination will make
one or more additional function calls (level C)
which we will see leaves various artifacts on
the stack. >

Il MAIN FEATURE ADVANCED

001FEBL0
Where do we start? 001FEB20
-) A 001FEB30
Before delving into NetWire stack analysis, 001FEB40
. 001FEBS50 0
we need to establish an anchor that helps 001FEBG0
us identify a NetWire stack amongst other 88%,’::52;8
data. As digital forensics practitioners who 88152228 1
often deal with disk images as opposed to live QOTEEDE0
i 001FEBDO
computers, we need to dig into places on the O0LFEBEQ
disk where memory may have ended up - for 881%358
i i 001FEC10|C4 76 F4 76(40 EC 1F 00|00 00 00 00|10 00 00 00 |AvOV@i..........
example, Windows swap (pagefile.sys). With 001FEC20|2F 77 F4 76 |FF 07 00 00|B3 5B F4 76 (00 00 80 00| wdvy...?[dv
a bit of trial and error we have found that 001FEC30 Ai..
) 001FEC40
the lower area of level B as mentioned above gg%ggggg
(towards address OxIFEB20]) is the ideal anchor. gg%ggg;g
At a session start when connecting to the c2 ggipscgg 2
. K FECA
a number of artifacts are stored in the stack 001FECBO

in addresses that, to a varying degree, are
re-used as buffers. Some of these buffers are
never or rarely overwritten. We have defined
four such addresses and are providing a
complete table showing how and when each
of them change. This table is available on
GitHub at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xIsx (sheet Buffers_matrix).

The addresses/offsets of the buffers we
are interested in:

Figure 11. The anchor

Q01FEEDQ| Q0 00 00 00|00 00 00 0000 00 00 Q00(7F 00 00 00|.......ouucunn..
Q01FEEEQ(OA 00 00 00|00 00 E1 01|25 63 25 2E(38 78 25 73
Q01FEEFQ (07 25 73 20|40 20 25 73|07 25 73 07|25 73 07 00|.%s @ %¥s5.%s.%s..
Q01FEF00|01 30 31 30|37 36 31 30|30 07 6A 6F |61 6B 69 6D|.01076100.joakim
Q01FEF10|20 40 20 6E |77 63 6C 69|65 6E 74 2D |50 43 07 31| @ nwclient-PC.1
Q01FEF20|38 07 07 00|40 EF 1F 00|CD 00 00 00|00 EF 1F 00[8...@%..%....49..

Figure 12. Buffer 3 right after a session is established

OUULFEEDU|OU LU 5B 0UU|E FE_5D UD|UU OU U0 DU |/F U0 U0 U0 .. LAY]:eeenenunenn
Q01FEEEQ|QA 00 00 00|00 00 E1 01 (25 63 25 2E(38 78 25 73|...... A.%C%. 8x%s
Q01FEEFQ 25 73 20|40 20 25 73|07 25 73 07|25 73 07 00|.%s @ %s.%s.%s..
001FEF00|[01][30 31 30[37 36 31 30(30]| 07 [6A 6F [61 6B 69 6D .01076100. joakim
Q01FEF10(20 M0 20 6E[77 63 6C 69|65 6”74 2050 43] 07 @ nwclient-PC.1
001FEF20|38] 077Q7 00[00 00 00 00 |CD-00 €Q 00|00 FO ole]| |ER o E e fone ol

A NetWire Workstation - o x

File View Tools Help
Elev-2oz2| O

Connections | Reverse Proxy.

=S A
Username @ Computer Platform Country ~ OSVersion InstalaonDate Maximum Bandwidth Version

e o pe=s o
e buffer0 OXIFEB60 / 0x2B60 DEmies vz o @rudentoc Windows nknonn vindans 7 e e

e pbuffer1 OXIFEBAO/O0x2BAO Figure 13. Buffer 3 containing host details

e buffer2 OXIFECA4 /0x2CA4

e buffer3 OXIFEFOO/Ox2F00 You can cross check this breakdown have provided a proof of concept (POC) tool

with the table in sheet “Buffers_matrix”
in the spreadsheet at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xIsx.

Referencing back to Figure 9, we can see the
code at 004010A0 and 004010A7 where the
control code is copied to OXIFEB5SC / 0x2B5C.

named NwStacks on GitHub at https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/NwStacks. The memory address
pointers of a NetWire process may change
depending on how it was executed. However,
the actual address, as seen in memory on
the main thread's stack; is not crucial to our

During a session start (the initial auth to c2
when the 9B control is sent) the buffers are
populated with the following data before being
sent to the c2:

e puffer 0: hostname
e buffer1: username

e buffer 2: a custom formatted string,
representing a bitmask for the victim’s 0S.
See sheet “Host_0S” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xIsx.

e buffer 3: a custom formatted string,
representing various host details. See
sheet “Host_details” at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xIsx.

In Figure 11, we see how the anchor area and
buffer 0 - 2 looks initially after the 9B control
when a session is established.

Since buffer 3 will be part of what we
decode, it is important to know exactly what it
contains. The complete breakdown of the initial
data in buffer 3 is shown in Figure 13.

Since the hostname stays untouched for the
lifetime of a session, we have a perfect spot to
build a signature from, at the heart of the most
compelling data. We can now build this byte
level regex:

[\x97-\XE8] + .{3} + <hostname> + \x00\x00\x00

Which means:

1byte for a valid control code

3 bytes of anything

Variable byte length for the actual hostname
formatted in hex

3 bytes of 00's

This is a rather simple regex, so any
code involved in processing the hits will need
additional validation. For this validation we

analysis as long as we can identify the data
on disk and work our way from a translated file
offset. The data points we will use always have
a fixed relative distance between them, thus
making identification and validation possible.
We will call these “crucial data points” in the
rest of this article. The fixed distance is caused
by the stack frame for the given function call
(except for calls going to external DLLs, which
may differ between Windows versions) always
having the same size regardless of the control
codes and payloads being processed.

For most situations when a connection to a
¢2 has been established, the stack size will be
a minimum of 0x34000 bytes. The stack size
will expand to 0x35000 bytes in a few well-
defined situations. Our research has shown that
when the size has grown to 0x35000 bytes, the
data in the first 0x1000 bytes contains nothing

[Dbigital Forensics Magazine

useful. For the analysis described in this article,
we have settled on using the size 0x34000 as
a baseline. That means for any search hit on
the byte regex described above, we will need

to assume that the stack begins 0x2b5c¢ bytes
before the signature hit and then treat the
following 0x34000 hytes as the full stack.

Validation

Our next step will be to validate certain crucial
data points within the stack to determine their
validity. In the remainder of this article, we will not
refer to memory addresses unless specifically
needed and instead refer to the file offsets in hex
notation with dec in brackets. A small subset of
the validation checks could look like this:

e The VA at 0x2BIC (11036) is valid

o The socket descriptors at 0x3F60 (16224) and
0x3F78 (16248) match (they might differ in the
case of a reconnect)

e Pointers at 0x2B38 (11064), 0x2B3C (11068)
and 0x2B40 (11072) are actually pointing to
buffer 0,1and 2

o Valid controls at 0x2B5C (11100) and Ox3F7C
(16252) + they match

e The length of payload at 0x3F6C (16236) is
valid, considering the current control

o The string formatting definition prior to buffer
3is valid, at 0x2EE8 (12008) (missing if the
connection is reset and socket descriptor is
FFFFFFFF)

e The VA at 0x3F50 (16208) is valid

e The VA at 0x3F5C (16220) is valid

e The value of 0003002C is present at
0x22FF80 (2293632)

e The VA 00402BD5 is present at 0x22FF88
(2293640)

What data in the stack is not helpful for our
analysis?

e Addresses to heap memory

o Addresses to functions in DLLs loaded
(kernel32.dll, msvert.dll etc)

o Socket descriptors (can be used as validation
within a given stack, but may change for a
different process or session)

Significant artifacts we can use in our analysis!
By now, we have a good understanding of the
layout of the stack and how to find and validate
that data - including data that needs to be
treated carefully and what data we can ignore.
The most significant artifacts which will be
useful in our analysis are:

0)

The last return address pushed to the stack in
level B (function 00401092) is stored at 0x2B1C
(11036). See a full listing in our spreadsheet

at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xIsx. Most often (in the case of a ping)
this value is 00401147 which originates from this
code section:

.text:0040111F movzx
.text:00401124 mov
.text:0040112B mov
.text:00401133 mov
.text:0040113B mov
.text:0040113F mov
text:00401142 call
text:00401147 jmp

We can use this value for further validation
and for the understanding of #6 described below.

1)

Buffer1-3

(Based on the table within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xIsx) We can use this information in
multiple ways. The presence of data (or the lack
of data, represented by the amount of zeroed
data), and even in combination. For example,
some actions always leave specific data behind,
whereas other actions never interact with these
buffers. Some actions wipe the buffer with a
specific amount of 00 before use, whereas
others never wipe and simply overwrite and
leave "slack" data behind. For some actions
that leave data behind, the data format is
unique enough to tell which control command it
originated from.

As digital forensics
practitioners who
often deal with

disk images as
opposed to live
computers, we
need to dig into
places on the disk
where memory may
have ended up.

edx, [esp+8+arg_30]; jumptable 0040111D case 151

eax, [esp+8+s]

[esp+8+IpValueNamel, O; int

dword ptr [esp+8], 0, char *

[esp+8+var_4], edx ; int

[esp+8+Size], eax; s

sub_408B8F ; Send the default reply packet (command 97).
loc_402B45 ; Nothing more to do, jump to end.

2)

Timestamp

At 0x3C4C (15436), there is a 64-bit timestamp
(in local time) written on every socket event.

We can use this timestamp to determine from
which point in time the stack is from. When

a session is active, a function at 00408F43
contains a loop where the socket is checked
with a 15-second timeout. The loop goes from 3
to 0; upon reaching O, a 98 control is sent to the
¢2. 0n the c2 there are settings for answering a
host ping and also to actively send ping requests
to hosts. If both settings are deactivated on the
c2, the timestamp is updated every 15 seconds.
However, the timestamp will be updated even
more frequently if other controls are actively
sent from the c2. If both settings are deactivated
on the ¢2, and a 98 control is triggered from the
host, data in area 0x3AB4 - Ox3BEF (15028 -
15343) will be updated with irrelevant content.

3)

¢2 hostname

At 0x3068 (12392, there may be a remnant
from the initial connection to the ¢2, which
is the c2 domain name. If this area is zeroed
(the area covered by buffer 3), one of the
actions listed within the sheet “Buffers_
matrix” at https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xIsx must have been executed.

4)

Control

Part of the validation is to check 0x2B5C (11100)
and 0x3F7C (16252). Because of the frequent ping
requests, the current control is very often 97. >

Il MAIN FEATURE ADVANCED

5)

Payload

The payload bytes start at 0x3F7D (16253). This
area is never wiped. Any data here passed as

an argument to control will overwrite existing
data with the size of the current payload and
with a null termination. For some of the controls
that do not have an argument (such as 97, the
ping), the size is 0, and the first byte here is

00. In many cases, we will find the remnants of
previous payloads here. The complete payload
area stretches from 0x3F7D (16253) to 0x22FF7B
(2293627), giving it @ maximum size per block of
OX2FFFF (196607). The block size is relevant when
a payload from the ¢2 has a size beyond 0x2FFFF
(196607), in which case it is split up into Ox2FFFF
(196607) blocks. This happens only with file
uploads when the file size is larger than Ox2FFFF
(196607). In the case of a file upload, the current
block size may be found as a remnant in the lower
24 bits of the uint32 at OXIFEAF8 / 0x2AF8, which
we will take a closer look at later in this article.

In the cases where no upload of significant size
has arrived, there will often be remnants from

the initial 9B control during the establishment

of the connection to the c2. The payload in this
situation is always of size 0x3E (62) and looks
like random data caused by encryption (last

byte at 0x3FBA (16314)). Note that the area from
0x22E150 (2285904) may contain remnants
from the initial startup of the process (the "end"
section described for the bitmaps at the top). For
afull listing of all c2 actions and sample payloads
decrypted, see https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Decrypted-
payloads.txt.

Level C artifacts are caused by the lower-level
functions when processing controls. This is the
topmost area in the "Top" section described in
the bitmaps. Data resolved in this location is, to
a large degree, caused by calls to the winapi,
and thus some addresses where data ultimately
gets stored may be 0S-dependent. Depending
on how and where the stack was found, some
of this area may be missing or overwritten. This
is especially likely the deeper in the stack the
data was stored. Treat the following items with
care. In our tool NwStacks, this is dynamically
resolved. The most significant File Explorer /
Key Logs usage remnants are as follows.

Note

Ping requests overwrite portions of a 0x340
(832) byte area at 0x27F0 - 0x2B30 (10224 -
11056). Take this into consideration.

6)

File Explorer init (drive listing) at Ox1BOC (6924).
This is caused by a call to kernel32!GetLogic
alDriveStringA. The location is constant for all
operating systems. It is one of the few situations
where the full output data sent to the c2 is stored
directly on the stack used by the main thread
(due to its small size). Each entry representing
avolume is 4 bytes long. The full data set size

is OXIAFC (6908). At OX1AEC, there is a return
address (VA) written of 004095E4. See our
NwStacks tool for validation and detection.

7

The 004095ED function, which is used for both
regular file explorer browse (A6 control) and

key logger reader/browse (CC control), leaves
somewhat unique artifacts often visible in this
larger area. The processing of these controls will
return details from the file system (type, size,
name, timestamp), and it uses a series of winapi
calls to get the raw data before formatting it and
sending it back to the c2. We will take a closer
look at how it works, starting with the function
epilogue (start):

.text:004095ED

.text:004095ED push edi

.text:004095EE push esi

.text:004095EF push ebx

.text:004095F0 sub esp, 410h

Here we immediately see the workspace of
this function being reserved as 410h. Effectively
the esp has been reduced from OX1FEB20 to
OxIFE700 after going through the epilogue.

Some actions always
leave specific data
behind, whereas
other actions never
interact with these
buffers. Some actions
wipe the buffer with a
specific amount of 00
before use, whereas
others never wipe
and simply overwrite
and leave “slack”
data behind.

It turns out this function call chain will go
quite deep and use the area stretching back to
OxIFDEE4. That leaves OX1FEB20 - Ox1FDEE4
= 0xC3C bytes of stack data relating to this
function's processing of file system data. As
we will see, this information will help us further
understand why certain data is found in this
region of the stack. The actions performed in
this function are:

A. Retrieve directory information based on
buffer 2 - > kernel32!FindFirstFileA - >
(ntdII!NtOpenFile + ntdll!NtQueryDirectoryFile.

B. Iterate through all items, and retrieve file
system details - > kernel32!FindNextFileA

C. Extract the details such as attribute type,
name, size, and the last write timestamp

D. Convert timestamp to UTC - >
kernel32!FileTimeToSystemTime

E. Format the data in a special way as is
expected on the ¢2 end - > msvert!_vsnprintf

F. Differentiate on files vs folders in how the
formatting is done (folders don't have size.

G. Each item is formatted and prepared for output
and is then copied to a separate heap memory
location

H. When all items are done, send the result back
to the c2

Now let's go through the most useful data
that we can find here, starting with the topmost
data (the deepest point on the stack that this
function went to):

70)
OXIFIC (7964)
As part of A) there will ultimately be a call
to ntdll!_RtIGetFullPathName_Ustr which is
needed for preparing the string before calling
ntdlI!NtOpenFile.

Deeper in the call chain within
kernel32!FindFirstFileA there will ultimately be
a call to ntdll!_RtlGetFullPathName_Ustr which
is needed for preparing the string before calling.

7h)
0x21F4 (8692)
As part of A) the call to ntdlI!NtQueryDirectoryFile
will leave a FILE_BOTH_DIR_INFORMATION struct
of the target directory.

kernel32!FindFirstFileA - >
ntdll!NtQueryDirectoryFile

It is important to note that in the case
of a refresh/browse in File Explorer after an
upload, the 3 timestamps except CreateTime
are updated. >

[Dbigital Forensics Magazine

w

DIGIT/

!
“

L FORENSICS TOOLS

BY DIGITALLFORENSICS EXPERTS

Making Maximum Exploitation of
Electronic Evidence More Accessible

Arsenal Image Mounter

Mount the contents of
disk images as “real”
disks on Windows® with
powerful and unique
digital forensics
functionality

“After many unsuccessful attempts to launch forensic
images into virtual machines with a popular digital
forensics tool, | decided to give Arsenal Image Mounter a
try. I’'m very glad | did, because | was able to virtualize
forensic images from multiple suspects. AIM also
bypassed Microsoft cloud account passwords within the
virtual machines, so | was able to take valuable
screenshots for the US Attorney. In addition, | have found
AIM’s multiple methods of Volume Shadow Copy
exporting to be useful.”

-- ICE/Homeland Security Investigation

ArsenalRecon.com

Hibernation Recon

Reconstruct active
memory and extract
multiple types (and levels)
of slack from Windows
hibernation files

Registry Recon

Unlock the potential of
huge volumes of
Windows Registry data
and see how Registries
changed over time

“Hibernation Recon has become DoD’s must-have tool
for extracting digital artifacts from Windows hibernation
files. Not only does Hibernation Recon properly
reconstruct active memory for all versions of Windows
when other tools fail, it is the only tool that extracts
various types of “slack space”, which has yielded critical
forensic artifacts for DoD’s foreign intelligence mission
that could not have been obtained any other way.”

-- United States Department of Defense

sales@ArsenalRecon.com , @ArsenalRecon

Il MAIN FEATURE ADVANCED

7c)

0x24A4 (9380)
During B-C a temporary copy of the WIN32_
FIND_DATAA structure for the next item is stored
here. This copy may be partially overwritten with
data from the ftLastWriteTime member.

(This only applies to a Windows 7 victim)

7d)

0x26FC (9980)

Last ret address pushed on the stack. When the
function is done it will be 409A89 or 409A2F.
0x2704 (9988) / Control A6 or CC.

7e)

0x2730 (10032)

The format statements used when feeding the
various data pieces through msvert!_vsnprintf.

7f)

0x2780 (10112)

During B) another copy of the WIN32_FIND_DATAA
structure for the next item is also stored here.

79)

0x28E4 (10468)

During E) and F) the ftLastWriteTime timestamp
is taken from Ox1FE794 and outputs the string at
OXIFESEA4.

7h)
0x2904 (10500)
During G) - H) format full row for item.

8)
File Upload and Download.

Upload

At OX2AEC (10988) the return address 41BCEB

is pushed to the stack only in the case of a file
upload. This is caused by the incoming AD control
closing the file handle. The address originates
from the function 0041BCA8, which is responsible
for closing certain file handles. The only other
case resulting in this code path being triggered

is for downloads, but because the outgoing AD
control is performed in a separate thread (not

the main thread as with incoming controls), the
address is not pushed to the stack used by the
main thread. In the upload case, the memory
address OXIFEAF4 =1(0x2AF4 /10996), and

the lower 24 bits of uint32 at memory address
OXIFEAF8 (0x2AF8 / 11000) equals the size of the
current/last chunk. The chunk size is written to
the stack at 0041BCA8 during the processing of
an incoming AC control at this code location:

.text:0041C8FB mov
Download

At OXIFEAS the return address 41C150 is pushed to
the stack. This is caused by the AB control, which
is effectively caused by the function located at
00401B66. Let's take a closer look at it:

[esp+2Ch+Count],

eax; Count

.text:00401B3B call sub_40AC70

.text:00401B40 mov ecx, [esp+8+arg_1410]
.text:00401B47 mov [ecx+218h], eax

.text:00401B4D mov [ecx+21Ch], edx

.text:00401B53 nop

text:00401B54

.text:00401B54 loc_401B54: ; CODE XREF: sub_401092+934,Ugj
text:00401B54 ; sub_401092+A14,Ugj
text:00401B54 mov eax, [esp+8+arg_1410]
text:00401B5B mov [esp+8+var_4], eax
.text:00401B5F mov [esp+8+Size], offset sub_41C150
.text:00401B66 call sub_40B2AB

.text:00401B95 jmp loc_402B45

It turns out that the 41C150 address in the
stack is written for uploads and downloads in
the same location. Still, because a new thread
is started for sending data back to the c2 with
the download, the address stays here in the
download scenario. For the upload scenario, the
closing of a handle with an incoming AD control
overwrites and leaves its unique fingerprint.
For the download scenario, memory address
OXIFEAFO = 0 (0x2AF0 /10992), and the 8 bytes
at memory address OXIFEAF8 (0x2AF8 / 11000)
represents the 64-bit LastAccessTime timestamp
of the downloaded file. The timestamp is caused
by a call to GetFileattributesExA which generates
a WIN32_FILE_ATTRIBUTE_DATA struct at memory
address OXIFEAEC (0x2AEC / 10988). This struct is
almost completely overwritten soon after, with the
exception of LastAccessTime member. In Figures
14,15 and 16, let's just take a closer look at how
it happens with snapshots when execution has
been halted in debugger at 3 different locations
from the above code section.

S0 FF 1F 00
01 00 00 00
02 00 00 30
01 00 00 00

001FEAEQ
001FEAFQ
001FEBOOQ
001FEBLO

07 00 00 00
38 02 00 00
01 00 00 00
01 00 00 00

00 10 00 00
18 EB 1F 00
00 00 00 00
00 BO FD 7F

Fortunately, the artifact in the 0x20 byte
area OXIFEAEO (0x2AEQ / 10976) - OXIFEAFF
(0x2AFF / 11007) which is unique to uploads
and downloads is left untouched when a ping
overwrites the surrounding area. Even a file
explorer refresh/browse will not overwrite
the bytes used in this area specific to the
identification of upload/download. However,
other controls/actions may overwrite and
cause identification of upload/download
specific to this location to be impossible. See
our NwStacks tool for detection and validation.

Note

If the socket descriptor equals OXFFFFFFFF, it
means the host is not connected to the c2. If
the host still needs to connect to the c2, the
buffer 0 - 4 will contain no useful information,
and the control + payload area at 0x3F7C+ will
be blank. If a previously established connection
gets dropped, the area at 0x3F7C+ will contain
the data last stored there.

00 00 00
07 S50 D1
00 00 00

1E 1B 40

Figure 14. Stack snapshot when execution is halted at VA 00401B3B

001FEAEQ|5A 13 00 00|00 00 00 00|00 10 00 00

001FEAFO|84 OD 02 44|50 06 DY 01|84 0D 02 44
001FEBOO|E2 64 48 4E|50 06 D9 01|00 00 00 00
001FEBLO|01 00 00 00|01 00 00 Q0|00 BO FD 7F

Figure 156. Stack snapshot when execution is halted at VA 00401B40

001FEAEQ|7C 01 00 QO (00 00 00 00|50 C1 41 00|90 25 A7
Q01FEAFOQ| 00 00 00 Q0|08 EB 1F 00|84 0D 02 4A |50 06 D9 Q1
001FEBOO|E2 64 48 4E (50 06 D9 01|08 0a Q0 Q0|7C 01 00 00
001FEBLlO| 01 00 00 00|01 00 00 00|00 BO FD 7F|6B 1B 40 00
Figure 16. Stack snapshot when execution is halted at VA 00401B95

Digital Forensics Magazine

Wrap-up with a demonstration

We have recreated a realistic user scenario
with multiple file uploads and file deletion.

A series of stack snapshots have been taken,
one after each action from the c2, which we
have made available at GitHub https://github.
com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleStackSnapshots/win7-32
(article). All the files we used for uploads are

available on our GitHub project at https://github.

com/ArsenalRecon/NetWireStackForensics/
tree/main/SampleFilesUploaded. Here is a
summary of our operations:

1) File Explorer open c:\share\sample_uploads

2) Upload of the file "My savings plan for 2023
-v1.4 (12.30.2022).pdf" to c:\share\sample_
uploads. File size is 54821 bytes

3) Execute a refresh in File Explorer to verify that
the file is uploaded

4) Upload a second file "file_w_33_0x40.txt" to
c:\share\sample_uploads
File size is 64 bytes.

5) Execute a refresh in File Explorer to verify that
the file is uploaded

6) Ping sent from the c2

The c2 was configured not to answer
or send pings to create some snapshots
without ping overwriting anything. Instead,
ping requests were actively sent from the
c2 using the NetWire Ul, so that snapshots
could be taken to show what a ping overwrite
looks like.

Now, we will not analyze each of the six
stack snapshots here, as they are made
available for anyone wanting to verify the
results. But we will take snapshot three and
verify our defined points of interest.

Snapshot 3

Step 1: Validation

00002B10
00002B20
00002B30
00002B40
00002B50
00002B60
00002B70
00002B80
00002B90
00002BA0O
00002BBO
00002BCO

00
n4d
FF
A4
c8
6E
00
00
00
6A
00
D8

Figure 17. Validation 1

00003F40
00003F50
00003F60
00003F70

05 00
9E 10
80 01
00 00

00
EO
FF
00

Figure 18. Validation 2
00

00
FF

00033F70
00033F80
00033F90
00033FA0
00033FBO
00033FCO
00033FDO
00033FEO
00033FF0

00
2C
00

00
00

00
00
D4

00
FF
FF
00
2B

00
FF
EC
00
CB

Figure 19. Validation 3

e Signature was found at 0x2B5C, where we
see an A6 control, then three nulls and the
hostname.

e The VA at 0x2BIC is valid: 004018ED.

o The socket descriptors at 0x3F60 and 0x3F78
match: 0x0180.

e The pointers at 0x2B38 (OXIEFEBAO), 0x2B3C
(OxIFEB60) and 0x2B40 (OXIFECA4) are as
expected. Substitute 0x1FCO0O0 from each and
you'll see that they match what we defined as
buffer 0,1and 2.

Step 2: Artifacts
a) Check payload. >

00003F50
00003F60
00003F70
00003F80
00003F90
00003FAOD
00003FBO
00003FCO
00003FDO
00003FEOQ
00003FF0
00004000
00004010
00004020
00004030
00004040
00004050
00004060
00004070

10
01

Figure 20. Payload section

00
02
EB
50
00
50
00
00
00
00
70
00

00
00
00
01

00
2B
36
00
00
E3
35
00
EO

00
00
01
70
3C
6l
65
65
72
74
38
66
3E
62
73
20
30
52
32

00 00 ED 18 40 00| ay ie
00 00 98 FF 1F 00 =i }¥y ¥
1F 00 60 EB 1F 00 ¥y¥¥ & &
25 73 08 EC 1F 00 =i DrB P%s i
00 00 A6 00 00 00 Ew w !

43 00 00 00 00 00 nwclient-PC

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00 joakim

00 00 00 50 25 73 $s p P%s
10 00 18 EE 1F 00 @ %s i
00 00 00 00 00 00

00 00 27 2C 40 00 % @ ay v,
00 00 1B 00 00 00 € |§y"

00 00 A6 43 3A 5C € Ic:\
00 00 00 00 00 00

40 00 3C EF F9 76 , 0+@ <iuv
11 77 00 EO FD 7F ay OY" 6 w ay
00 00 00 EO FD 7F %S2w ay
00 00 A0 FF 22 00 "
0C 77 08 A2 0D 00 Yyyy5a w ¢
11 77 CB 2B 40 00 iy" B5 wh+@
00 00 00 00 00 00 ay

FD 7F 00 00 00 Ofl E+@ av

The control at 0x2B5C and 0x3F7C match:
0xA6.

The size of the payload at 0x3F6C looks valid:
0x1B.

The formatting at OX2EE8 is present:
9/0c%0.8x%os etc.

The VA at 0x3F50 is valid: 0040109E.

The VA at 0x3F5C is valid: 00402C27.

At 0x33F80 we find the expected value:
0003002C.

The VA at 0x33F88 is valid: 00402BD5

z e
€

ay '@
1y"
€ Hoi RN
share\sample_upl
oads*.* </Type/
Catalog/Pages 2
0 R/Lang (en-US)
/StructTreeRoot
33 0 R/MarkInfo<
</Marked true>>/
Metadata 88 0 R/
ViewerPreference
s 89 0 R>> endo
bj 2 0 obj <</
Type/Pages/Count
13/Kids[3 0 R
9 0R 11 O R 13
OR1I50R 17 0
R190R 21 OR

Il MAIN FEATURE ADVANCED

In the section for raw input from the ¢2, starting
at Ox3F7C we can see:

e The control is A6, which is a File Explorer
browse command.

o Taking the defined size of 0x1B bytes from
offset 0x3F7D gives us: C:\share\sample_
uploads*.*.

e There is an expected null byte at 0x3F98
(OX3F7D + OxI1B).

e We can spot more data after the current
payload, starting at 0x3F99; this strongly
indicates some other action before the current
OxA6.

b) Check buffers 1, 2, and 3 according to our
table in https://github.com/ArsenalRecon/
NetWireStackForensics/blob/main/Artifacts-
matrix.xIsx.

Buffer 1

In Figure 17, we see in buffer one at 0x2BAO
that there is a username visible. Also, other
data remnants are visible after the username,
indicating that a control that wipes the buffer
has not been executed in this session.

Buffer 2

At offset 0x2CA4 we can see data in buffer 2.
(Figure 21) Here we see a null-terminated string
that perfectly matches the browse command
seen in the previous step:

C:\share\sample_uploads*.*

But we can also see remnants of more data
in the buffer:

avings plan for 2023 - v1.4 (12.30.2022).pdf

It seems clear that the argument here
has been a file name, and according to the
“Buffers_matrix” table at https://github.com/
ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xIsx, there are only two
possible options. A file rename or a file upload.
Moreover, since 0x200 bytes was wiped earlier,
this strongly suggests a file upload occurred.

We can clearly see
the data from the
initial connection has
been wiped, leaving
only a 0x30 byte.

00002CAO |40 ED 1F 00 43 3A 5C 73 68 61 72 65 5C 73 61 6D @i

C:\share\sam
ple_uploads*.*

avings plan for

2023 - vl.4 (12.
30.2022) .pdf

00002CBO |70 6C 65 5F 75 70 6C 6F 61 64 73 5C 2A 2E 2A 00
00002CCO |61 76 69 6E 67 73 20 70 6C 61 6E 20 66 6F 72 20
00002CDO |32 30 32 33 20 2D 20 76 31 2E 34 20 28 31 32 2E
00002CE0 |33 30 2E 32 30 32 32 29 2E 70 64 66 00 00 00 00

Figure 21. Buffer 2

Buffer 3

6 %Cc%.8x%s
s @ %5 %5 %5

00002EE0 |OA 00 00 00 00 00 36 01 25 63 25 2E 38 78 25 73
00002EF0 |07 25 73 20 40 20 25 73 07 25 73 07 25 73 07 00
00002F00 30 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 O
00002F10 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
00002F20 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
00002F30 |00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00

Figure 22. Buffer 3

We can clearly see the data from the initial
connection has been wiped, leaving only a 0x30
byte. This artifact thus matches our suspected
file upload from the previous step, according
to the “Buffers_matrix” table at https://github.
com/ArsenalRecon/NetWireStackForensics/blob/
main/Artifacts-matrix.xIsx.

c) Check the socket timestamp.
00003C40 |00 00 00 00 08 FD 1F 00 F8 FC 1F 00 40 02 30 0D y et @O0

00003C50 E6 1D D9 01 FF FF FF FF FF FF FF 7F 00 00 00 00 & U yyyyyyy
Figure 23. Socket timestamp

At offset 0x3C4C, we find the 8 bytes
4002300DE61DD901 decoded as a 64-bit
timestamp from little endian format, equals:
2023-01-0113:36:28.5073984.

d) Verifying the upload artifact. We already have

a strong indication that a file upload has occurred.
At offset 0x2AF8 (ref 8), we find the value

0xD625, which according to surrounding data

at Ox2AEC and 0x2AF4, indicates the size of

the last block for a file upload.

00002AE0 A0 74 42 00 FB EA 1F 00 FB EA 1F 00 EB BC 41 00 tB Q¢ 0é& &4A
00002AF0 60 29 3B 75 01 00 00 00 25 D6 00 57 BO 25 86 5E ‘);u %0 W°stA
00002B00 'E3 3E 28 35 19 7D B2 54 E8 C7 63 00 25 00 00 00 | &>(5 }2TéCc %
Figure 24. Size of uploaded file

As the file bytes start at the second byte in
the payload from an AC control, we will need to
copy 0xD625 bytes from offset OX3F7E.
00011550 42 38 30 45 30 32 44 35 34 45 34 45 38 33 31 32 B8SOE02D54E4E8312

00011560 34 30 33 37 42 34 38 36 46 34 45 32 3E 5D 20 2F
00011570 50 72 €5 76 20 35 32 36 36 35 2F 58 52 65 66 53

4037B486F4E2>] /
Prev 52665/XRefS

00011580 74 eD 20 35 32 32 31 31 3E 3E OD OA 73 74 el 72 tm 52211>> star
00011590 74 78 72 65 66 0D OA 35 34 36 34 32 OD OA 25 25 txref 54642 %%
000115A0 45 4F 4E 00 00 00 00 00O 00 00 00 00 OO OO 00 00 |EOE

000115B0 (00 00 00 00 00 00 00 OO 0O 00 0O 0O OO0 0O 00 0O
000115Cc0 00 00 00 00 OO 00 00 OO 00 00 00 0O 0O 00 00 0O

Figure 25. Payload end

We can see that the bytes ending at Ox115A2
indicate the end.

[oigital Forensics Magazine

Here is a side-by-side comparison of the copied
and original file bytes showing how the argument
overwrote the first few bytes to the A6 control.

0000 [a S5c 73 68 61 72 65 S5c 73 61 6d 70 6¢c 65 5F
0010 |70 6c 6f 61 64 73 5c 2a 2e 2a 00 3c 2f 54 79
0020 |65 2f 43 61 74 61 6¢c 6f 67 2f S0 61 67 65 73
0030 |32 20 30 20 52 2f 4c 61 6e 67 28 65 6e 2d 55
0040 |29 20 2f 53|74 72 75 63|74 54 72 65 65 52 6f
0050 |74 20 33 33 /20 30 20 52 2f 4d 61 72 6b 49 6e
0060 6f 3c 3c 2f 4d 61 72 6b 65 64 20 74 72 75 65
0070 |3e 2f 4d 65|74 61 64 61 74 61 20 38 38 20 30
0080 |52 2f 56 69 65 77 65 72 50 72 65 66 65 72 65
0090 |63 65 73 20 38 39 20 30 20 52 3e 3e 0d Oa 65
00a0 |64 6f 62 6a 0d 0a 32 20 30 20 6f 62 6a 0d Oa
00b0 |3c 2f 54 79 70 6§ Zf 50 61 67 6§ 73 2f 43 6f
Figure 26. File upload comparison
e) Check lower-level artifacts from File Explorer
and browse command.
(ref 6)
At OX1AEC, we find the VA 004095E4, which is
the last return address pushed on stack within
the 00409508 function which is only called
when processing the A4 control. At OXIAFC
we find the total size of the data which is OxC.
The array of detected volumes are found from
0x1BOC - Ox1B17.
00001AD0O |11 00 00 00 00 00 00 00 11 00
00001AE0 00 00 00 00 00 00 00 00 94 FF
00001AF0 80 01 00 00 A4 00 00 00 OC DB
00001B0O0 00 00 00 00 00 00 00 00 00 00
00001B10 43 3A 03 07 44 3A 05 07 00 00
Figure 27. File Explorer detecting available drives
The decoded volume array;
A: - > Floppy Drive
C: - > Fixed Drive
D: - > CD-ROM Drive
(ref 7a)
At offset OX1F1C we see the expected wchar
equivalent of the browse argument (as prepared
to NtOpenFile).
00001F10 48 84 10 77 00 00 00 00 80 73
00001F20 5C 00 73 00 €8 00 61 00 72 00
00001F30 61 00 6D 00 70 00 6C 00 €5 00
00001F40 6C 00 6F 00 €1 00 €4 00 73 00
00001F50 2A 00 00 00 00 00 00 00 00 00
Figure 28. Low level analysis of offset OxIFIC
(ref 7b)
At offset 0x21FC we also find the FILE_BOTH_
DIR_INFORMATION struct which includes the 4
SSTANDARD_INFORMATION timestamps from the
directory being browsed.
000021F0 FF 07 00 00 00 00 00 00 00 00
00002200 1C 1D D9 01 F3 CA 81 01 E6 1D
00002210 E6 1D D9 01 F3 CA 81 01 E6 1D
00002220 00 00 00 00 00 00 00 00 00 00
00002230 02 00 00 00 00 00 00 00 00 00
00002240 00 00 00 00 00 00 00 00 00 00
00002250 00 00 2E 00 00 00 61 00 48 EE

Figure 29. Low level analysis of offset Ox21FC

B\share\sample_u
ploads*. *.</Typ
e/catalog/Pages

2 0 R/Lang(en-us
) /StructTreeRoo
t 33 0 R/Markinf
o<</Marked true>
>/Metadata 88 0

R/viewerpPreferen
ces 89 0 R>>..en
dobj..2 0 obj..<
</Type/Pages/Cou

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00a0
00b0

* L~ m
o8 w s
oo

Q- o
v o=
~ o
* S~ Q0
. gow .

a Hi weyc

%PDF-1.7. . %uppy.
-1 0 obj..<</Typ
e/catalog/Pages
2 0 rR/Lang(en-us
) /StructTreeroo
t 33 0 R/Markinf
o<</Marked true>
>/Metadata 88 0
R/viewerpPreferen
ces 89 0 R>>..en
dobj..2 0 obj..<
</Type/Pages/Cou

Full translation;

CreationTime: 2022-12-3113:35:53.6698984
LastAccessTime: 2023-01-0113:36:08.9107187
LastWriteTime: 2023-01-0113:36:08.9107187
ChangeTime: 2023-01-0113:36:08.9107187
EndOfFile: 0

AllocationSize: 0

FileAttributes: 16 (directory)

FileNameLength: 2

EaSize: 0 >

Il MAIN FEATURE ADVANCED

(ref 7d)

At 0x26fc we find the VA 409A89 and at 0x2704
we see the value A6, suggesting the low-level

browse related artifacts belong to the A6 control.

000026F0 DD 55 3F 3D FE FF FF FF 27
00002700 |cCc E8 1F 00 Ae 00 00 00 20

Figure 30. Low level analysis of offset 0x26FC

(ref 7)

At 0x2780, we find a WIN32_FIND_DATAA struct
for the last item in alphabetic order found in the
directory browsed.

00002780 |20 00 00 00 SC €6E D5 42 57
00002790 |57 F4 D8 01 50 33 DA 42 57
00002720 EO 5E 00 00 00 00 00 00 OO
000027B0 |74 78 74 00 67 73 20 70 e6C
000027C0 32 30 32 33 20 2D 20 76 31
000027D0 33 30 2E 32 30 32 32 29 2E

Figure 31. Low level analysis of offset 0x2780

Full translation;

FileAttributes: 32 (archive)

CreationTime: 2022-11-09 16:21:02.8045468
LastAccessTime: 2022-11-09 16:21:02.8045468
LastWriteTime: 2022-11-09 16:21:02.8357968
FileSizeHigh: 0

FileSizeLow: 24288

FileName: zzz.txt

(notice the slack data from the file name of a
previous file passed into the struct)

(ref 7g)
At 0x28e4 we find the formatted string of
LastWriteTime from the above struct:

09/11/2022 16:21:02.

000028E0 00 00 00 00 30 39 2F 31 31
000028F0 36 3A 32 31 3A 30 32 00 00

Figure 32. Low level analysis of offset 0x28E4

(ref 7h)

At 0x2904, we find the details of the current/last

item formatted as returned to the ¢c2;

32 zzz.txt 24288 09/11/2022 16:21.02

00002900 00 00 00 00 33 32 07 7A 7A
00002910 34 32 38 38 07 30 39 2F 31
00002920 31 36 3A 32 31 3A 30 32 07
00002930 32 32 29 2E 70 64 66 07 35
00002940 2F 30 31 2F 32 30 32 33 20
00002950 38 07 00 01 00 00 00 00 O8

Figure 33. Low level analysis of offset 0x2904

This field is of variable size, and just as we
saw in the WIN32_FIND_DATAA struct above,
slack data may be visible. Notice the 07 field
separator that is heavily used in NetWire.

DD E6 74 89 9A 40 00
8C C8 01 A6 00 00 00

F4 D8 01 9C 6E D5 42 enOBWOP enOB
F4 D8 01 00 00 00 00 W6@ P3UBWOG

00 00 00 7A 7A 7A 2E a* ZZZ.
61 6E 20 66 6F 72 20 txt gs plan for
2E 34 20 28 31 32 2E | 2023 - vl.4 (12.
70 €4 €6 00 E8 1F 00 | 30.2022) .pdf &

2F 32 30 32 32 20 31 09/11/2022 1
00 3E 00 38 OF C9 01 6:21:02 > 8 E

7TA 2E 74 78 74 07 32
31 2F 32 30 32 32 20
00 2E 33 30 2E 32 30
34 38 32 31 07 30 31 22).pdf 54821 01
31 33 3A 33 36 3A 30 /01/2023 13:36:0
00 00 00 00 00 3E 00 8 >

32 zzzEXE 2
4288 09/11/2022
16:21:02 .30.20

Summary snapshot 3
This stack snapshot is from around 2023-01-01
13:36:28.5073984.

When File Explorer was initialized, three
volumes were detected: A;, C;, and D:.

The current A6 control is a File Explorer
browse with the argument C:\share\sample_
uploads*.* verified at three different levels.

A file ending with "avings plan for 2023 - vi.4
(12.30.2022).pdf" appears to have been uploaded
to C:\share\sample_uploads\ with almost the
entire content recoverable within the stack.

From low-level timestamps, the exact pointin
time appears to be 2023-01-0113:36:08.9107187.
The last executed A6 control was executed
sometime between 2023-01-0113:36:08.9107187

and 2023-01-0113:36:28.5073984.

A filesystem analysis has not been included
here, but it would be yet another set of artifacts
to compare the stack findings with. e

Snapshots

Our findings have been verified on Windows
7 82-bit and 64-bit, Windows 81 64-bit,

and Windows 10 64-bit. A collection of

stack snapshots for each 0S is provided

at https;//github.com/ArsenalRecon/
NetWireStackForensics/tree/main/
SampleStackSnapshots. We have done
some preliminary testing of the latest NetWire
(version 2.1, and the methodology outlined
here is still applicable to a large extent. There
are changes, though - for example, the stack
has shrunk to roughly /4 of the size in 1.7, and
in the pe header the DYNAMIC_BASE setting
is present in DIICharacteristics. Control codes
look to be the same. We may address version
21more specifically in the future.

AUTHOR

Joakim Schicht is a Cloud Engineer at Vizrt,
Digital Forensic Analyst at Joakim Schicht
Consulting, and assists Arsenal with digital
forensics software development and casework.
Joakim enjoys writing code (https.//github.com/
Jschicht) and deciphering the unknown.

TECHNICAL EDITORS

Mark Spencer, Arsenal (https://ArsenalExperts.
com) and Brandon Levene, Lightforge Ventures
(https//wwwilightforgeventures.com]

[oigital Forensics Magazine

0 50 Feoduric Wit tamporan
Offne MER S0000GB Fiodrimciibi Fixed dik

Ofine MER S0000GB | Fadiemovtis Fosddsk

ARSENAL RECON

Arsenal Image Mounter

Arsenal Image Mounter mounts the contents of
disk images as complete disks in Windows®. As far
as Windows is concerned, the contents of disk images
mounted by Arsenal Image Mounter are real SCSI disks,
allowing users to benefit from disk-specific features like
integration with Disk Manager, launching virtual machines
(and then bypassing Windows authentication and DPAPI),
managing BitLocker-protected volumes, mounting Volume

Shadow Copies, and more.

Hibernation Recon

Hibernation Recon not only supports active memory
reconstruction from Windows XP, Vista, 7, 8/8.1, 10, and 11
hibernation files, but also extracts massive volumes of
information from the multiple types (and levels) of slack space
that may exist within them. Additional features of Hibernation
Recon include the automatic recovery of valuable NTFS
metadata and parallel processing of multiple hibernation files.

Arm Yourself

Get the entire collection of Arsenal tools with an affordable subscription which:

Complete

4168 VB Decompressed slack 103268
Index 130 entries

Active memory bytes:
Index $I30 entries (INDX active) 13085

bytes:
(INDX stack). 21621

Non-zoro bytes after valid slackc 1K8 Raw slack bytos:

3314 Me

Raw siack bytos:

DiHbRec 20

Docomprossod siack bytos: P
Index SI30 entries (INDX stack): 57906
fd index SO entnes (INDX slack): 1

1

RADIWin10X84 -
1708

713 M8

79

654 MB

hibefiLsys
07:1140-13-02013

Decompressed sia
Index SI30 entries
SObild i

Raw siack bytes:

ik bytes:
(INDX slack): 8753
946

index $O entrios (INDX slack):

Elapsed Tim
0S version/arch:

Rosult.

Elapsod Timo:
OS versionvarch:

Resut

Elapsed Time:
05 version/arch:
Resull

0 days 0 rs 6 min 29 500

VAN7X64SPO

Compiete

ARSENAL RECON

Registry Recon

Registry Recon is not just another Registry parser. We
developed powerful new methods to parse Registry data so
that Registries which have existed on a Windows system over
time can be rebuilt, providing unique insight into how Registry
data has changed over time. Registry Recon provides access
to an enormous volume of Registry data which has been
effectively deleted, whether that deletion occurred due to
benign system activity, malfeasance by a user, or even
re-imaging by IT personnel.

+ Enables the full functionality of all our tools with a single license
+ Locks in a low price with discounts based on subscription length
« Provides easy access to new versions and support (no more SMS hassle)

ArsenalRecon.com

Select the plan that’s right for you at ArsenalRecon.com!

sales@ArsenalRecon.com ’ @ArsenalRecon

ARSENAL CONSULTING

— ARM YOURSELF —

DIGITAL FORENSICS & INFORMATION SECURITY

INTELLECTUAL PROPERTY THEFT, EVIDENCE SPOLIATION, INTERNET

INVESTIGATIONS, FINANCIAL FRAUD, COMPUTER INTRUSION, EXTORTION

THE ARSENAL DIFFERENCE

Do you know where electronic evidence exists?

Without digital forensics, you don’t. Whether you are involved in an
internal investigation or ongoing litigation, traditional electronic discovery
only scratches the surface when it comes to locating and understanding
crucial electronic data. Arsenal clients have repeatedly found that utilizing
digital forensics provides them with improved insight into internal

matters and a significant advantage when it comes to ongoing disputes.

Team

The Arsenal team is led by President Mark Spencer, who has over

twenty years of law-enforcement and private-sector digital forensics
experience. We are forensic practitioners at our core and not your typical
“computer guys.” When faced with adversity, our personnel don’t give up
- they fight harder.

Approach

Arsenal specializes in applying the most powerful digital forensics tools
and techniques to provide consulting services in high-profile and high-
stakes cases. Our services, using methods acceptable in courts of law,

result in clear and concise answers for our clients.

Experience

We have extensive experience with both criminal and civil litigation,
having served as expert consultants and witnesses in state, federal, and
international courts. Our hard-fought experience allows us to better
understand clients’ challenges and tailor the best solutions for them. In
addition to providing consulting services, we develop digital forensics
tools and train our peers.

As a direct result of Arsenal's work, we
were able to obtain a quick and
Jfavorable resolution of a non-compete
matter. You want the digital forensics
experts at Arsenal on your side.

— Philip Y. Brown, Principal

Brown Counsel

I am a journalist who spent 19 months
in jail due to a conspiracy within the
Turkish Republic. Arsenal assisted in
my acquittal thanks to their detailed
forensic analyses and extraordinary
efforts, and I thank them for once more
proving that science will defeat lies.

— Bang Pehlivan, Investigative Journalist
Odatv

Our clients were facing the possible loss
of their professional licenses. Arsenal
helped us identify what data needed to
be preserved then devised and ran
searches that we used to prove our
clients’ innocence.

— Carole Cooke, Attorney
Todd & Weld LLP

Can you afford to trust anyone else?

Web: ArsenalExperts.com | Twitter: @ArsenalArmed | Email: info@ArsenalExperts.com

	DFM52_OFC_Cover - Online
	DFM52_032
	DFM52_033
	DFM52_034
	DFM52_035
	DFM52_036
	DFM52_037
	DFM52_038
	DFM52_039
	DFM52_040
	DFM52_041
	DFM52_042
	DFM52_043
	DFM52_044
	DFM52_045
	DFM52_046
	DFM52_047
	Arsenal Consulting

